Wait you can place Java annotations there?

I worked too much on other stuff, so I didn’t have time to blog, so here is a tiny post.

Java annotations are pretty nice: You can annotate many things to add more information. For example, you can add an @Nullable to a type used to tell static analyzers or IDEs that this the value of this type there might actually be null:

public @Nullable String parse(String description) {
  ...
  return error ? null : result;
}

There are many other uses, especially in adding more information needed for code generation. In working on hello-ebpf, I used annotations and generated code with JavaPoet containing annotations. When we generate the code from above with JavaPoet, it produces:

public java.lang. @Nullable String parse(
  java.lang.String description) {
  // ...
}

But how could this be valid Java? I expected

public @Nullable java.lang.String parse(
  java.lang.String description) {
  // ...
}

but not the former. Let’s look into the language specification. Section 4.3 tells us class types in fields and other type usages as follows:

ClassType:
  {Annotation} TypeIdentifier [TypeArguments]
  PackageName . {Annotation} TypeIdentifier [TypeArguments]
  ClassOrInterfaceType . {Annotation} TypeIdentifier [TypeArguments] 

According to the specification @Nullable java.lang.String and java.lang. @Nullable String are the same.

It gets even weirder with arrays:

java.lang. @Nullable Integer @Nullable [] arr @Nullable []

This denotes a two-dimensional array of strings that might be null and might contain null, and its arrays might contain null. This is true to the language specification:

ArrayType:
  PrimitiveType Dims
  ClassOrInterfaceType Dims
  TypeVariable Dims
Dims:
  {Annotation} [ ] {{Annotation} [ ]}

There is even an example in the specification that is similar to our example:

For example, given the field declaration:

@Foo int f;

@Foo is a declaration annotation on f if Foo is meta-annotated by @Target(ElementType.FIELD), and a type annotation on int if Foo is meta-annotated by @Target(ElementType.TYPE_USE). It is possible for @Foo to be both a declaration annotation and a type annotation simultaneously.

Type annotations can apply to an array type or any component type thereof (§10.1). For example, assuming that A, B, and C are annotation interfaces meta-annotated with @Target(ElementType.TYPE_USE), then given the field declaration:

@C int @A [] @B [] f;

@A applies to the array type int[][], @B applies to its component type int[], and @C applies to the element type int. For more examples, see §10.2.

An important property of this syntax is that, in two declarations that differ only in the number of array levels, the annotations to the left of the type refer to the same type. For example, @C applies to the type int in all of the following declarations:

@C int f;
@C int[] f;
@C int[][] f;
Language Specification Section 9.7.4

Conclusion

Java never stops surprising me. This syntax looked weird when I first stumbled upon it, but after looking through the language specification, I see how useful and justified this placement of annotations is.

I hope you enjoyed this tiny blog post on annotations; see you in my next one.

P.S.: I’m currently at KCDC

Is JDWP’s onjcmd feature worth using?

A few months ago, I told you about the onjcmd feature in my blog post Level-up your Java Debugging Skills with on-demand Debugging (which is coming to JavaLand 2024). The short version is that adding onjcmd=y to the list of JDWP options allows you to delay accepting the incoming connection request in the JDWP agent until jcmd <JVM pid> VM.start_java_debugging is called.

The main idea is that the JDWP agent

  1. only listens on the debugging port after it is triggered, which could have some security benefits
  2. and that the JDWP agent causes less overhead while waiting, compared to just accepting connections from the beginning.

The first point is debatable; one can find arguments for and against it. But for the second point, we can run some benchmarks. After renewed discussions, I started benchmarking to conclude whether the onjcmd feature improves on-demand debugging performance. Spoiler alert: It doesn’t.

Benchmarks

As for the benchmarks, I chose to run the Renaissance benchmark suite (version 0.15.0):

Renaissance is a modern, open, and diversified benchmark suite for the JVM, aimed at testing JIT compilers, garbage collectors, profilers, analyzers and other tools.

Renaissance is a benchmarking suite that contains a range of modern workloads, comprising of various popular systems, frameworks and applications made for the JVM.

Renaissance benchmarks exercise a range of programming paradigms, including concurrent, parallel, functional and object-oriented programming.

RENAISSANCE.DEV

Renaissance typically runs the sub-benchmarks in multiple iterations. Still, I decided to run the sub-benchmarks just once per Renaissance run (via -r 1) and instead run Renaissance itself ten times using hyperfine to get a proper run-time distribution. I compared three different executions of Renaissance for this blog post:

  • without JDWP: Running Renaissance without any debugging enabled, to have an appropriate baseline, via java -jar renaissance.jar all -r 1
  • with JDWP: Running Renaissance in debugging mode, with the JDWP agent accepting debugging connections the whole time without suspending the JVM, via java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=*:5005 -jar renaissance.jar all -r 1
  • with onjcmd: Running Renaissance in debugging mode, with the JDWP agent accepting debugging connections only after the jcmd call without suspending the JVM, via java -agentlib:jdwp=transport=dt_socket,server=y,suspend=n,onjcmd=y,address=*:5005 -jar renaissance.jar all -r 1

Remember that we never start a debugging session or use jcmd, as we’re only interested in the performance of the JVM while waiting for a debugging connection in the JDWP agent.

Yes, I know that Renaissance uses different iteration numbers for the sub-benchmarks, but this should not affect the overall conclusions from the benchmark.

Results

Now to the results. For a current JDK 21 on my Ubuntu 23.10 machine with a ThreadRipper 3995WX CPU, hyperfine obtains the following benchmarks:

Benchmark 1: without JDWP
  Time (mean ± σ):     211.075 s ±  1.307 s    [User: 4413.810 s, System: 1438.235 s]
  Range (min … max):   209.667 s … 213.361 s    10 runs

Benchmark 2: with JDWP
  Time (mean ± σ):     218.985 s ±  1.924 s    [User: 4533.024 s, System: 1133.126 s]
  Range (min … max):   216.673 s … 222.249 s    10 runs

Benchmark 3: with onjcmd
  Time (mean ± σ):     219.469 s ±  1.185 s    [User: 4537.213 s, System: 1181.856 s]
  Range (min … max):   217.824 s … 221.316 s    10 runs

Summary
  "without JDWP" ran
    1.04 ± 0.01 times faster than "with JDWP"
    1.04 ± 0.01 times faster than "with onjcmd"

You can see that the run-time difference between “with JDWP” and “with onjcmd” is 0.5s, way below the standard deviations of both benchmarks. Plotting the benchmark results using box plots visualizes this fact:

Or, more analytically, Welch’s t-test doesn’t rule out the possibility of both benchmarks producing the same run-time distribution with p=0.5. There is, therefore, no measurable effect on the performance if we use the onjcmd feature. But what we do notice is that enabling the JDWP agent results in an increase in the run-time by 4%.

The question is then: Why has it been implemented in the JDK at all? Let’s run Renaissance on JDK 11.0.3, the first release supporting onjcmd.

Results on JDK 11.0.3

Here, using onjcmd results in a significant performance improvement of a factor of 1.5 (from 354 to 248 seconds) compared to running the JDWP agent without it:

Benchmark 1: without JDWP
  Time (mean ± σ):     234.011 s ±  2.182 s    [User: 5336.885 s, System: 706.926 s]
  Range (min … max):   229.605 s … 237.845 s    10 runs
 
Benchmark 2: with JDWP
  Time (mean ± σ):     353.572 s ± 20.300 s    [User: 4680.987 s, System: 643.978 s]
  Range (min … max):   329.610 s … 402.410 s    10 runs
 
Benchmark 3: with onjcmd
  Time (mean ± σ):     247.766 s ±  1.907 s    [User: 4690.555 s, System: 609.904 s]
  Range (min … max):   245.575 s … 251.026 s    10 runs
Summary
  "without JDWP" ran
    1.06 ± 0.01 times faster than "with onjcmd"
    1.51 ± 0.09 times faster than "with JDWP"

We excluded the finagle-chirper sub-benchmark here, as it causes the run-time to increase drastically. The sub-benchmark alone does not cause any problems, so the GC run possibly causes the performance hit before the sub-benchmark, which cleans up after the dotty sub-benchmark. Dotty is run directly before finagle-chirper.

Please be aware that the run sub-benchmarks on JDK 11 differ from the run on JDK 21, so don’t compare it to the results for JDK 21.

But what explains this difference?

Fixes since JDK 11.0.3

Between JDK 11.0.3 and JDK 21, there have been improvements to the OpenJDK, some of which drastically improved the performance of the JVM in debugging mode. Most notable is the fix for JDK-8227269 by Roman Kennke. The issue, reported by Egor Ushakov, reads as follows:

Slow class loading when running with JDWP

When debug mode is active (-agentlib:jdwp), an application spends a lot of time in JVM internals like Unsafe.defineAnonymousClass or Class.getDeclaredConstructors.Sometimes this happens on EDT and UI freezes occur.

If we look into the code, we’ll see that whenever a new class is loaded and an event about it is delivered, when a garbage collection has occurred, classTrack_processUnloads iterates over all loaded classes to see if any of them have been unloaded. This leads to O(classCount * gcCount) performance, which in case of frequent GCs (and they are frequent, especially the minor ones) is close to O(classCount^2). In IDEA, we have quite a lot of classes, especially counting all lambdas, so this results in quite significant overhead.

JDK-8227269

This change came into the JDK with 11.0.9. We see the 11.0.3 results with 11.0.8, but with 11.0.9, we see the results of the current JDK 11:

Benchmark 1: without JDWP
  Time (mean ± σ):     234.647 s ±  2.731 s    [User: 5331.145 s, System: 701.760 s]
  Range (min … max):   228.510 s … 238.323 s    10 runs
 
Benchmark 2: with JDWP
  Time (mean ± σ):     250.043 s ±  3.587 s    [User: 4628.578 s, System: 716.737 s]
  Range (min … max):   242.515 s … 254.456 s    10 runs
 
Benchmark 3: with onjcmd
  Time (mean ± σ):     249.689 s ±  1.765 s    [User: 4788.539 s, System: 729.207 s]
  Range (min … max):   246.324 s … 251.559 s    10 runs
 
Summary
  "without JDWP" ran
    1.06 ± 0.01 times faster than "with onjcmd"
    1.07 ± 0.02 times faster than "with JDWP"

This clearly shows the significant impact of the change. 11.0.3 came out on Apr 18, 2019, and 11.0.9 on Jul 15, 2020, so the onjcmd improved on-demand debugging for almost a year.

Want to try this out yourself? Get the binaries from SapMachine and run the benchmarks yourself. This kind of performance archaeology is quite rewarding, giving you insights into critical performance issues.

Conclusion

A few years ago, it was definitely a good idea to add the onjcmd feature to have usable on-demand debugging performance-wise. But nowadays, we can just start the JDWP agent to wait for a connection and connect to it whenever we want to, without any measurable performance penalty (in the Renaissance benchmark).

This shows us that it is always valuable to reevaluate if specific features are worth the maintenance cost. I hope this blog post gave you some insights into the performance of on-demand debugging. See you next week for the next installment in my hello-ebpf series.

This article is part of my work in the SapMachine team at SAP, making profiling and debugging easier for everyone.

From C to Java Code using Panama

The Foreign Function & Memory API (also called Project Panama) has come a long way since it started. You can find the latest version implemented in JDK 21 as a preview feature (use --enable-preview to enable it) which is specified by the JEP 454:

By efficiently invoking foreign functions (i.e., code outside the JVM), and by safely accessing foreign memory (i.e., memory not managed by the JVM), the API enables Java programs to call native libraries and process native data without the brittleness and danger of JNI.

JEP 454

This is pretty helpful when trying to build wrappers around existing native libraries. Other languages, like Python with ctypes, have had this for a long time, but Java is getting a proper API for native interop, too. Of course, there is the Java Native Interface (JNI), but JNI is cumbersome and inefficient (call-sites aren’t inlined, and the overhead of converting data from Java to the native world and back is huge).

Be aware that the API is still in flux. Much of the existing non-OpenJDK documentation is not in sync.

Example

Now to my main example: Assume you’re tired of all the abstraction of the Java I/O API and just want to read a file using the traditional I/O functions of the C standard lib (like read_line.c): we’re trying to read the first line of the passed file, opening the file via fopen, reading the first line via gets, and closing the file via fclose.

#include "stdio.h"
#include "stdlib.h"

int main(int argc, char *argv[]) {
  FILE* file = fopen(argv[1], "r");
  char* line = malloc(1024);
  fgets(line, 1024, file);
  printf("%s", line);
  fclose(file);
  free(line);
}

This would have involved writing C code in the old JNI days, but we can access the required C functions directly with Panama, wrapping the C functions and writing the C program as follows in Java:

public static void main(String[] args) {
    var file = fopen(args[0], "r");
    var line = gets(file, 1024);
    System.out.println(line);
    fclose(file);
}

But do we implement the wrapper methods? We start with the FILE* fopen(char* file, char* mode) function which opens a file. Before we can call it, we have to get hold of its MethodHandle:

private static MethodHandle fopen = Linker.nativeLinker().downcallHandle(
        lookup("fopen"),
        FunctionDescriptor.of(/* return */ ValueLayout.ADDRESS, 
            /* char* file */ ValueLayout.ADDRESS, 
            /* char* mode */ ValueLayout.ADDRESS));

This looks up the fopen symbol in all the libraries that the current process has loaded, asking both the NativeLinker and the SymbolLookup. This code is used in many examples, so we move it into the function lookup:

public static MemorySegment lookup(String symbol) {
    return Linker.nativeLinker().defaultLookup().find(symbol)
                 .or(() -> SymbolLookup.loaderLookup().find(symbol))
                 .orElseThrow();
}

The look-up returns the memory address at which the looked-up function is located.

We can proceed with the address of fopen and use it to create a MethodHandle that calls down from the JVM into native code. For this, we also have to specify the descriptor of the function so that the JVM knows how to call the fopen handle properly.

But how do we use this handle? Every handle has an invokeExact function (and an invoke function that allows the JVM to convert data) that we can use. The only problem is that we want to pass strings to the fopen call. We cannot pass the strings directly but instead have to allocate them onto the C heap, copying the chars into a C string:

public static MemorySegment fopen(String filename, String mode) {
    try (var arena = Arena.ofConfined()) {
        return (MemorySegment) fopen.invokeExact(
                arena.allocateUtf8String(filename),
                arena.allocateUtf8String(mode));
    } catch (Throwable t) {
        throw new RuntimeException(t);
    }
}

In JDK 22 allocateUtf8String changes to allocateFrom (thanks Brice Dutheil for spotting this).

We use a confined arena for allocations, which is cleaned after exiting the try-catch. The newly allocated strings are then used to invoke fopen, letting us return the FILE*.

Older tutorials might mention MemorySessions, but they are removed in JDK 21.

After opening the file, we can focus on the char* fgets(char* buffer, int size, FILE* file) function. This function is passed a buffer of a given size, storing the next line from the passed file in the buffer.

Getting a MethodHandle is similar to fopen:

private static MethodHandle fgets = Linker.nativeLinker().downcallHandle(
        PanamaUtil.lookup("fgets"),
        FunctionDescriptor.of(ValueLayout.ADDRESS, 
                              ValueLayout.ADDRESS, 
                              ValueLayout.JAVA_INT, 
                              ValueLayout.ADDRESS));

Only the wrapper method differs because we have to allocate the buffer in the arena:

public static String gets(MemorySegment file, int size) {
    try (var arena = Arena.ofConfined()) {
        var buffer = arena.allocateArray(ValueLayout.JAVA_BYTE, size);
        var ret = (MemorySegment) fgets.invokeExact(buffer, size, file);
        if (ret == MemorySegment.NULL) {
            return null; // error
        }
        return buffer.getUtf8String(0);
    } catch (Throwable t) {
        throw new RuntimeException(t);
    }
}

Finally, we can implement the int fclose(FILE* file) function to close the file:

private static MethodHandle fclose = Linker.nativeLinker().downcallHandle(
        PanamaUtil.lookup("fclose"),
        FunctionDescriptor.of(ValueLayout.JAVA_INT, ValueLayout.ADDRESS));

public static int fclose(MemorySegment file) {
    try {
        return (int) fclose.invokeExact(file);
    } catch (Throwable e) {
        throw new RuntimeException(e);
    }
}

You can find the source code in my panama-examples repository on GitHub (file HelloWorld.java) and run it on a Linux x86_64 machine via

> ./run.sh HelloWorld LICENSE # build and run
                                 Apache License

which prints the first line of the license file.

Errno

We didn’t care much about error handling here, but sometimes, we want to know precisely why a C function failed. Luckily, the C standard library on Linux and other Unixes has errno:

Several standard library functions indicate errors by writing positive integers to errno.

CPP Reference

On error, fopen returns a null pointer and sets errno. You can find information on all the possible error numbers on the man page for the open function.

We only have to have a way to obtain the errno directly after a call, we have to capture the call state and declare the capture-call-state option in the creation of the MethodHandle for fopen:

try (var arena = Arena.ofConfined()) {
    // declare the errno as state to be captured, 
    // directly after the downcall without any interence of the
    // JVM runtime
    StructLayout capturedStateLayout = Linker.Option.captureStateLayout();
    VarHandle errnoHandle = 
        capturedStateLayout.varHandle(
            MemoryLayout.PathElement.groupElement("errno"));
    Linker.Option ccs = Linker.Option.captureCallState("errno");

    MethodHandle fopen = Linker.nativeLinker().downcallHandle(
            lookup("fopen"), 
            FunctionDescriptor.of(POINTER, POINTER, POINTER), 
            ccs);

    MemorySegment capturedState = arena.allocate(capturedStateLayout);
    try {
        // reading a non-existent file, this will set the errno
        MemorySegment result = 
            (MemorySegment) fopen.invoke(capturedState,
                // for our example we pick a file that doesn't exist
                // this ensures a proper error number
                arena.allocateUtf8String("nonexistent_file"),
                arena.allocateUtf8String("r"));
        int errno = (int) errnoHandle.get(capturedState);
        System.out.println(errno);
        return result;
    } catch (Throwable e) {
        throw new RuntimeException(e);
    }
}

To convert this error number into a string, we can use the char* strerror(int errno) function:

// returned char* require this specific type
static AddressLayout POINTER = 
    ValueLayout.ADDRESS.withTargetLayout(
        MemoryLayout.sequenceLayout(JAVA_BYTE));
static MethodHandle strerror = Linker.nativeLinker()
        .downcallHandle(lookup("strerror"),
                FunctionDescriptor.of(POINTER, 
                    ValueLayout.JAVA_INT));

static String errnoString(int errno){
    try {
        MemorySegment str = 
            (MemorySegment) strerror.invokeExact(errno);
        return str.getUtf8String(0);
    } catch (Throwable t) {
        throw new RuntimeException(t);
    }
}

When we then print the error string in our example after the fopen call, we get:

No such file or directory 

This is as expected, as we hard-coded a non-existent file in the fopen call.

JExtract

Creating all the MethodHandles manually can be pretty tedious and error-prone. JExtract can parse header files, generating MethodHandles and more automatically. You can download jextract on the project page.

For our example, I wrote a small wrapper around jextract that automatically downloads the latest version and calls it on the misc/headers.h file to create MethodHandles in the class Lib. The headers file includes all the necessary headers to run examples:

#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>

For example the fgets function, jextract generates as an entry point the following:

public static MethodHandle fopen$MH() {
    return RuntimeHelper.requireNonNull(constants$48.const$0,"fopen");
}
/**
 * {@snippet :
 * FILE* fopen(char* __filename, char* __modes);
 * }
 */
public static MemorySegment fopen(MemorySegment __filename, MemorySegment __modes) {
    var mh$ = fopen$MH();
    try {
        return (java.lang.foreign.MemorySegment)mh$.invokeExact(__filename, __modes);
    } catch (Throwable ex$) {
        throw new AssertionError("should not reach here", ex$);
    }
}

Of course, we still have to take care of the string allocation in our wrapper, but this wrapper gets significantly smaller:

public static MemorySegment fopen(String filename, String mode) {
    try (var arena = Arena.ofConfined()) {
        // using the MethodHandle that has been generated 
        // by jextract
        return Lib.fopen( 
                arena.allocateUtf8String(filename),
                arena.allocateUtf8String(mode));
    }
} 

You can find the example code in the GitHub repository in the file HelloWorldJExtract.java. I integrated jextract via a wrapper directly into the Maven build process, so just mvn package to run the tool.

More Information

There are many other resources on Project Panama, but be aware that they might be dated. Therefore, I recommend reading JEP 454, which describes the newly introduced API in great detail. Additionally, the talk “The Panama Dojo: Black Belt Programming with Java 21 and the FFM API” by Per Minborg at this year’s Devoxx Belgium is a great introduction:

As well as the talk by Maurizio Cimadamore at this year’s JVMLS:

Conclusion

Project Panama greatly simplifies interfacing with existing native libraries. I hope it will gain traction after leaving the preview state with the upcoming JDK 22, but it should already be stable enough for small experiments and side projects.

I hope my introduction gave you a glimpse into Panama; as always, I’m happy for any comments, and I’ll see you next week(ish) for the start of a new blog series.

This article is part of my work in the SapMachine team at SAP, making profiling and debugging easier for everyone. Thank you to my colleague Martin Dörr, who helped me with Panama and ported Panama to PowerPC.

Profiling Maven Projects with my IntelliJ Profiler Plugin

Or: I just released version 0.0.11 with a cool new feature that I can’t wait to tell you about…

According to the recent JetBrains survey, most people use Maven as their build system and build Spring Boot applications with Java. Yet my profiling plugin for IntelliJ only supports profiling pure Java run configuration. Configurations where the JVM gets passed the main class to run. This is great for tiny examples where you directly right-click on the main method and profile the whole application using the context menu:

But this is not great when you’re using the Maven build system and usually run your application using the exec goal, or, god forbid, use Spring Boot or Quarkus-related goals. Support for these goals has been requested multiple times, and last week, I came around to implementing it (while also two other bugs). So now you can profile your Spring Boot, like the Spring pet-clinic, application running with spring-boot:run:

Giving you a profile like:

Or your Quarkus application running with quarkus:dev:

Giving you a profile like:

This works specifically by using the options of these goals, which allows the profiler plugin to pass profiling-specific JVM options. If the plugin doesn’t detect a directly supported plugin, it passes the JVM options via the MAVEN_OPTS environment variable. This should work with the exec goals and others.

Gradle script support has also been requested, but despite searching the whole internet till the night, I didn’t find any way to add JVM options to the JVM that Gradle runs for the Spring Boot or run tasks without modifying the build.gradle file itself (see Baeldung).

I left when it was dark and rode out into the night with my bike. Visiting other lost souls in the pursuit of sweet potato curry.

Only Quarku’s quarkusDev task has the proper options so that I can pass the JVM options. So, for now, I only have basic Quarkus support but nothing else. Maybe one of my readers knows how I could still provide profiling support for non-Quarkus projects.

You can configure the options that the plugin uses for specific task prefixes yourself in the .profileconfig.json file:

{
    "additionalGradleTargets": [
        {
            // example for Quarkus
            "targetPrefix": "quarkus",
            "optionForVmArgs": "-Djvm.args",
            "description": "Example quarkus config, adding profiling arguments via -Djvm.args option to the Gradle task run"
        }
    ],
    "additionalMavenTargets": [
        {   // example for Quarkus
            "targetPrefix": "quarkus:",
            "optionForVmArgs": "-Djvm.args",
            "description": "Example quarkus config, adding profiling arguments via -Djvm.args option to the Maven goal run"
        }
    ]
}

This update has been the first one with new features since April. The new features should make life easier for profiling both real-world and toy applications. If you have any other feature requests, feel free to create an issue on GitHub and, ideally, try to create a pull request. I’m happy to help you get started.

See you next week on some topics I have not yet decided on. I have far more ideas than time…

This article is part of my work in the SapMachine team at SAP, making profiling and debugging easier for everyone. Thanks to the issue reporters and all the other people who tried my plugin.

Loom is just HyperThreading in Java

While sitting in Cay Horstmann‘s “Looming Changes in Java Concurrency” talk at BaselOne, I had an epiphany: Aren’t virtual threads with Loom just a version of HyperThreading on the JVM?

Both try to utilize a computation resource fully, be it hardware core or platform thread, by multiplexing multiple tasks onto it, despite many tasks waiting regularly for IO operations to complete:

When one task waits, another can be scheduled, improving overall throughput. This works especially well when longer IO operations follow short bursts of computation.

There are, of course, differences between the two, most notably: HyperThreading doesn’t need the tasks to cooperate, as Loom does, so a virtual core can’t starve other virtual cores. Also noteworthy is that the scheduler for Hyper-Threading is implemented in silicon and cannot be configured or even changed, while the virtual thread execution can be targeted to one’s needs.

I hope you found this small insight helpful in understanding virtual threads and putting them into context. You can find more about these topics in resources like JEP 444 (Virtual Threads) and the “Hyper-Threading Technology Architecture and Microarchitecture” paper.

This article is part of my work in the SapMachine team at SAP, making profiling and debugging easier for everyone.

Putting JFR into Context

Have you ever wanted to bring your JFR events into context? Adding information on sessions, user IDs, and more can improve your ability to make sense of all the events in your profile. Currently, we can only add context by creating custom JFR events, as I presented in my Profiling Talks:

We can use these custom events (see Custom JFR Events: A Short Introduction and Custom Events in the Blocky World: Using JFR in Minecraft) to store away the information and later relate them to all the other events by using the event’s time, duration, and thread. This works out-of-the-box but has one major problem: Relating events is quite fuzzy, as time stamps are not as accurate (see JFR Timestamps and System.nanoTime), and we do all of this in post-processing.

But couldn’t we just attach some context to every JFR event we’re interested in? Not yet, but Jaroslav Bachorik from DataDog is working on it. Recently, he wrote three blog posts (1, 2, 3). The following is a different take on his idea, showing how to use it in a small file server example.

The main idea of Jaroslav’s approach is to store a context in thread-local memory and attach it to every JFR event as configured. But before I dive into the custom context, I want to show you the example program, which you can find, as always, MIT-licensed on GitHub.

Example

We create a simple file server via Javalin, which allows a user to

  • Register (URL schema register/{user})
  • Store data in a file (store/{user}/{file}/{content})
  • Retrieve file content (load/{user}/{file})
  • Delete files (delete/{user}/{file})

The URLs are simple to use, and we don’t bother about error handling, user authentication, or large files, as this would complicate our example. I leave it as an exercise for the inclined reader. The following is the most essential part of the application: the server declaration:

FileStorage storage = new FileStorage();                                                               
try (Javalin lin = Javalin.create(conf -> {                                                            
            conf.jetty.server(() ->                                                                    
                    new Server(new QueuedThreadPool(4))                                                
            );                                                                                         
        })                                                                                             
        .exception(Exception.class, (e, ctx) -> {                                                      
            ctx.status(500);                                                                           
            ctx.result("Error: " + e.getMessage());                                                    
            e.printStackTrace();                                                                       
        })                                                                                             
        .get("/register/{user}", ctx -> {                                                              
            String user = ctx.pathParam("user");                                                       
            storage.register(user);                                                                    
            ctx.result("registered");                                                                  
        })                                                                                             
        .get("/store/{user}/{file}/{content}", ctx -> {                                                
            String user = ctx.pathParam("user");                                                       
            String file = ctx.pathParam("file");                                                       
            storage.store(user, file, ctx.pathParam("content"));                                       
            ctx.result("stored");                                                                      
        })                                                                                             
        .get("/load/{user}/{file}", ctx -> {                                                           
            String user = ctx.pathParam("user");                                                       
            String file = ctx.pathParam("file");                                                       
            ctx.result(storage.load(user, file));                                                      
        })                                                                                             
        .get("/delete/{user}/{file}", ctx -> {                                                         
            String user = ctx.pathParam("user");                                                       
            String file = ctx.pathParam("file");                                                       
            storage.delete(user, file);                                                                
            ctx.result("deleted");                                                                     
        })) {                                                                                          
    lin.start(port);                                                                                   
    Thread.sleep(100000000);                                                                           
} catch (InterruptedException ignored) {                                                               
}                                                                                                      

This example runs on Jaroslav’s OpenJDK fork (commit 6ea2b4f), so if you want to run it in its complete form, please build the fork and make sure that you’re PATH and JAVA_HOME environment variables are set accordingly.

You can build the server using mvn package and
start it, listening on the port 1000, via:

java -jar target/jfr-context-example.jar 1000

You can then use it via your browser or curl:

# start the server
java -XX:StartFlightRecording=filename=flight.jfr,settings=config.jfc \
-jar target/jfr-context-example.jar 1000 &
pid=$!

# register a user
curl http://localhost:1000/register/moe

# store a file
curl http://localhost:1000/store/moe/hello_file/Hello

# load the file
curl http://localhost:1000/load/moe/hello_file
-> Hello

# delete the file
curl http://localhost:1000/delete/moe/hello_file

kill $pid

# this results in the flight.jfr file

To make testing easier, I created the test.sh script, which starts the server, registers a few users and stores, loads, and deletes a few files, creating a JFR file along the way. We're using a custom JFR configuration to enable the IO events without any threshold. This is not recommended for production but is required in our toy example to get any such event:

<?xml version="1.0" encoding="UTF-8"?>

<configuration version="2.0" label="Custom" description="Custom config for the example"
  provider="Johannes Bechberger">
    <event name="jdk.FileRead" withContext="true">
        <setting name="enabled">true</setting>
        <setting name="stackTrace">true</setting>
        <setting name="threshold" control="file-threshold">0 ms</setting>
    </event>

    <event name="jdk.FileWrite" withContext="true">
        <setting name="enabled">true</setting>
        <setting name="stackTrace">true</setting>
        <setting name="threshold" control="file-threshold">0 ms</setting>
    </event>
</configuration>

We can use the jfr tool to easily print all the jdk.FileRead events from the created flight.jfr file in JSON format:

jfr print --events jdk.FileRead --json flight.jfr

This prints a list of events like:

{
  "type": "jdk.FileRead", 
  "values": {
    "startTime": "2023-10-18T14:31:56.369071625+02:00", 
    "duration": "PT0.000013042S", 
    "eventThread": {
      "osName": "qtp2119992687-32", 
      ...
    }, 
    "stackTrace": {
      "truncated": false, 
      "frames": [...]
    }, 
    "path": "\/var\/folders\/nd\/b8fyk_lx25b1ndyj4kmb2hk403cmxz\/T\/tmp13266469351066000997\/moe\/test_1", 
    "bytesRead": 8, 
    "endOfFile": false
  }
}

You can find more information on this and other events in my JFR Event Collection:

There are, of course, other events, but in our file server example, we’re only interested in file events for now (this might change as Jaroslav adds more features to his fork).

Now, we can start bringing the events into context.

Adding Custom Context

Before we can add the context, we have to define it, as described in Jaroslav’s blog post. We create a context that stores the current user, action, trace ID, and optional file:

@Name("tracer-context")
@Description("Tracer context type tuple")
public class TracerContextType extends ContextType implements AutoCloseable {

    private static final AtomicLong traceIdCounter = new AtomicLong(0);

    // attributes are defined as plain public fields annotated by at least @Name annotation
    @Name("user")
    @Description("Registered user")
    public String user;

    @Name("action")
    @Description("Action: register, store, load, delete")
    public String action;

    @Name("file")
    @Description("File if passed")
    public String file;

    // currently no primitives allowed here
    @Name("trace")
    public String traceId;

    public TracerContextType(String user, String action, String file) {
        this.user = user;
        this.action = action;
        this.file = file;
        this.traceId = "" + traceIdCounter.incrementAndGet();
        this.set();
    }

    public TracerContextType(String user, String action) {
        this(user, action,"");
    }

    @Override
    public void close() throws Exception {
        unset();
    }
}

A context has to be set and then later unset, which can be cumbersome in the face of exceptions. Implementing the AutoClosable interface solves this by allowing us to wrap code in a try-with-resources statement:

try (var t = new TracerContextType(/* ... */)) {
    // ...
}

All JFR events with enabled context that happen in the body of the statement are associated with the TracerContextType instance. We can use the code of all request handlers in our server with such a construct, e.g.:

.get("/store/{user}/{file}/{content}", ctx -> {                 
    String user = ctx.pathParam("user");                        
    String file = ctx.pathParam("file");                        
    try (var t = new TracerContextType(user, "store", file)) {  
        storage.store(user, file, ctx.pathParam("content"));    
        ctx.result("stored");                                   
    }                                                           
})                                                              

One last thing before we can analyze the annotated events: JFR has to know about your context before the recording starts. We do this by creating a registration class registered as a service.

@AutoService(ContextType.Registration.class)
public class TraceContextTypeRegistration implements ContextType.Registration {

    @Override
    public Stream<Class<? extends ContextType>> types() {
        return Stream.of(TracerContextType.class);
    }
}

We use the auto-service project by Google to automatically create the required build files (read more in this blog post by Pedro Rijo.

Using the Custom Context

After adding the context, we can see it in the jdk.FileRead events:

{
  "type": "jdk.FileRead", 
  "values": {
    "startTime": "2023-10-18T14:31:56.369071625+02:00", 
    "duration": "PT0.000013042S", 
    "eventThread": {
      "osName": "qtp2119992687-32", 
      ...
    }, 
    "stackTrace": {
      "truncated": false, 
      "frames": [...]
    }, 
    "tracer-context_user": "moe", 
    "tracer-context_action": "load", 
    "tracer-context_file": "test_1", 
    "tracer-context_trace": "114", 
    "path": "\/var\/folders\/nd\/b8fyk_lx25b1ndyj4kmb2hk403cmxz\/T\/tmp13266469351066000997\/moe\/test_1", 
    "bytesRead": 8, 
    "endOfFile": false
  }
}

We clearly see the stored context information (tracer-context_*).

Using the jq tool, we can analyze the events, like calculating how many bytes the server has read for each user:

➜ jfr print --events jdk.FileRead --json flight.jfr |
  jq -r '
    .recording.events
    | group_by(.values."tracer-context_user")
    | map({
      user: .[0].values."tracer-context_user",
      bytesRead: (map(.values.bytesRead) | add)
    })
   | map([.user, .bytesRead])
   | ["User", "Bytes Read"]
   , .[]
   | @tsv
 '
User    Bytes Read
        3390101
bob     80
curly   100
frank   100
joe     80
john    90
larry   100
mary    90
moe     80
sally   100
sue     80

The empty user is for all the bytes read unrelated to any specific user (like class files), which is quite helpful.

Conclusion

This small example is just a glimpse of what is possible with JFR contexts. Jaroslav’s prototypical implementation is still limited; it, e.g., doesn’t support contexts at method sampling events, but it is already a significant improvement over the status quo. I’ll be creating follow-up blog posts as the prototype evolves and matures.

Thanks for coming so far, and see you next week for another blog post and maybe at a meet-up or conference (see Talks).

This article is part of my work in the SapMachine team at SAP, making profiling and debugging easier for everyone.

Level-up your Java Debugging Skills with on-demand Debugging

Debugging is one of the most common tasks in software development, so one would assume that all features of debuggers have ample coverage in tutorials and guides. Yet there are three hidden gems of the Java Debugging (JDWP) agent that allow you to delay the start of the debugging session till

  • you gave orders via jcmd (onjcmd=y option)
  • the program threw a specific exception (onthrow=<exception>)
  • the program threw an uncaught exception (onuncaught=y)

Before I tell you more about the specific options, I want to start with the basics of how to apply them:

Option Application

When you debug remotely in your IDE (IntelliJ IDEA in my case), the “Debug Configurations” dialog tells you which options you should pass to your remote JVM:

Just append more options by adding them to the -agentlib option, or by setting the _JAVA_JDWP_OPTIONS environment variable, which is comma-appended to the options.

All options only work correctly in the server mode (server=y) of the JDWP agent (suspend=y or suspend=n seem to exhibit the same behavior with onjcmd).

I’m now showing you how the three hidden gems work:

JCmd triggered debugging

There are often cases where the code that you want to debug is executed later in your program’s run or after a specific issue appears. So don’t waste time running the debugging session from the start of your program, but use the onjcmd=y option to tell the JDWP agent to wait with the debugging session till it is triggered via jcmd:

 ➜ java "-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=*:5005,onjcmd=y" src/test/java/OnThrowAndJCmd.java &
 ➜ echo $! # get pid
 # wait some time and then start debugging on demand
 ➜ jcmd $! VM.start_java_debugging
jcmd 97145 VM.start_java_debugging
97145:
Debugging has been started.
Transport : dt_socket
Address : *:5005

jps is your friend if you want to find the process id of an already running JVM.

I created a sample class in my java-dbg repository on GitHub with a small sample program for this article. To use JCmd triggered with our IDE, we first have to create a remote debug configuration (see previous section); we can then start the sample program in the shell and trigger the start of the debugging session. Then, we start the remote debug configuration in the IDE and debug our program:

A similar feature long existed in the SAPJVM. In 2019 Christoph Langer from SAP decided to add it to the OpenJDK, where it was implemented in JDK 12 and has been there ever since. It is one of the many significant contributions of the SapMachine team.

Disclaimer: I’m part of this magnificent team, albeit not in 2019.

Exception triggered debugging

Far older than jcmd triggered are exception-triggered debugging sessions. There are two types:

  1. The throwing of a specific exception (byte-code or normal name, inner classes with $) can start the debugging session by using onthrow=<exception>. This is especially nice if you want to debug the cause of this specific exception. This feature can easily be used in combination with your favorite IDE.
  2. The existence of an uncaught exception can trigger the start of a debugging session by using onuncaught=y. The debugging context is your outermost main method, but it’s still helpful if you want to inspect the exception or the state of your application. A problem is that you cannot use the debuggers from IntelliJ IDEA or NetBeans to explore the context; you have to use the command line debugger jdb instead.

Due to historical reasons, you also have to supply a command that is executed when the debugging session starts via the launch option, but setting it to exit works just fine.

Using both trigger types is similar to the JCmd triggered debugging:

 ➜ java "-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=*:5005,onthrow=Ex,launch=exit" src/test/java/OnThrowAndJCmd.java
# or
 ➜ java "-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=*:5005,onuncaught=y,launch=exit" src/test/java/OnThrowAndJCmd.java

If you’re okay with using jdb, you can also use the launch option to call a script that starts jdb in a new tmux session, in our case, tmux_jdb.sh:

#!/bin/sh
tmux new-session -d -s jdb -- jdb -attach $2

We run our application using the JDWP agent with the onthrow=Ex,launch=sh tmux_jdb.sh option to start the jdb the first time the Ex exception is thrown and attach to the tmux session:

➜ java "-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=*:5005,onthrow=Ex,launch=sh tmux_jdb.sh" src/test/java/OnThrowAndJCmd.java
# in another console after the exception is thrown
➜ tmux attach -t jdb

Where we can explore the current state of the application:

Debugging a specific exception has never been easier.

jdb and the JDWP on* options aren’t as widely used as graphical debuggers, so you might still find some bugs. I don’t know whether the stack trace in the second-to-last screenshot is a bug. Feel free to comment if you know the answer.

How to discover these features

You can either be like me and just drop into the JDK source and look into the debugInit.c file, the official documentation, or you use help option, which prints the following with JDK 21:

➜ java "-agentlib:jdwp=help"
               Java Debugger JDWP Agent Library
               --------------------------------

  (See the "VM Invocation Options" section of the JPDA
   "Connection and Invocation Details" document for more information.)

jdwp usage: java -agentlib:jdwp=[help]|[<option>=<value>, ...]

Option Name and Value            Description                       Default
---------------------            -----------                       -------
suspend=y|n                      wait on startup?                  y
transport=<name>                 transport spec                    none
address=<listen/attach address>  transport spec                    ""
server=y|n                       listen for debugger?              n
launch=<command line>            run debugger on event             none
onthrow=<exception name>         debug on throw                    none
onuncaught=y|n                   debug on any uncaught?            n
onjcmd=y|n                       start debug via jcmd?             n
timeout=<timeout value>          for listen/attach in milliseconds n
includevirtualthreads=y|n        List of all threads includes virtual threads as well as platform threads.
                                                                   n
mutf8=y|n                        output modified utf-8             n
quiet=y|n                        control over terminal messages    n

Obsolete Options
----------------
strict=y|n
stdalloc=y|n

Examples
--------
  - Using sockets connect to a debugger at a specific address:
    java -agentlib:jdwp=transport=dt_socket,address=localhost:8000 ...
  - Using sockets listen for a debugger to attach:
    java -agentlib:jdwp=transport=dt_socket,server=y,suspend=y ...

Notes
-----
  - A timeout value of 0 (the default) is no timeout.

Warnings
--------
  - The older -Xrunjdwp interface can still be used, but will be removed in
    a future release, for example:
        java -Xrunjdwp:[help]|[<option>=<value>, ...]

Of course, this only gives you a glance at the options, so reading the source code still revealed much of what I had before.

Conclusion

Hidden gems are everywhere in the Java ecosystem, even in widely used tools like debugging agents. Especially onthrow and onjcmd can improve the performance of on-demand debugging, as this allows us to trigger the start of the debugging session from outside the debugger.

I hope you can apply your newly gained knowledge the next time you have a complex problem to debug. Still curious about debugging? Come back next week for another blog post.

This article is part of my work in the SapMachine team at SAP, making profiling and debugging easier for everyone. Thanks to Thomas Darimont, with whom I discovered the hidden features while preparing for my talks on Java Debugging. I wrote this article on the train to Devoxx Belgium.

Taming the Bias: Unbiased Safepoint-Based Stack Walking

Walking only at safepoints has advantages: The main one is that you aren’t walking the stack in a signal handler but synchronously to the executed program. Therefore you can allocate memory, acquire locks and rematerialize virtual thread / Loom frames. The latter is significant because virtual threads are the new Java feature that cannot support using signal-handler-based APIs like AsyncGetCallTrace.

This blog post is based on the ideas of Erik Österlund, and the second one is related to these new ideas. The first one is AsyncGetCallTrace Reworked: Frame by Frame with an Iterative Touch!, which you should read before continuing with this post. For a refresher on safepoints, please read The Inner Workings of Safepoints.

Erik summed up the problems with my previous JEP proposal, and in a way with AsyncGetCallTrace, quite nicely:

Well the current proposal doesn’t have a clear story for
1) Making it safe
2) Working with virtual threads
3) Supporting incremental stack scanning
4) Supporting concurrent stack scanning

He proposed that walking Java threads only at safepoints while obtaining some information in the signal handler might do the trick. So I got to work, implementing an API that does just this.

Idea

The current interaction between a sampler of the profiler and the Java Threads looks like the following:

The sampler thread signals every Java thread using POSIX signals and then obtains the full trace directly in the signal handler while the thread is paused at an arbitrary location. I explored variations of this approach in my post Couldn’t we just Use AsyncGetCallTrace in a Separate Thread?

My new approach, on the contrary, walks the Java thread in a signal handler till we find the first bytecode-backed Java frame, stores this in the thread-local queue, triggers a safepoint, and then walks the full Java stack at these safepoints for all enqueued top-frames. We, therefore, have a two-step process:

Instead of just walking the stack in the signal handler:

The new API exploits a few implementation details of the OpenJDK:

  1. There is a safepoint check at least at the end of every non-inlined method (and sometimes there is not, but this is a bug, see The Inner Workings of Safepoints). OpenJ9 doesn’t have checks at returns, so the whole approach I am proposing doesn’t work for them.
  2. When we are at the return of a non-inlined method, we have enough information to obtain all relevant information of the top inlined and the first non-inlined frame using only the program counter, stack pointer, frame pointer, and bytecode pointer obtained in the signal handler. We focus on the first non-inlined method/frame, as inlined methods don’t have physical frames, and walking them would result in walking using Java internal information, which we explicitly want to avoid.

Proposed API

This API builds upon the API defined in jmethodIDs in Profiling: A Tale of Nightmares and the iterator API defined in AsyncGetCallTrace Reworked: Frame by Frame with an Iterative Touch!

But, in contrast to the other parts of the API, this new safepoint-based part only works when the previously defined conditions hold. This is not the case in OpenJ9, so I propose making the new feature optional. But how do profilers know whether an implementation supports an optional part of the API? By using the ASGST_Capabilities:

// Implementations don't have to implement all methods,
// only the iterator related and those that match 
// their capabilities
enum ASGST_Capabilities {
  ASGST_REGISTER_QUEUE = 1, // everything safepoint queue related
  ASGST_MARK_FRAME     = 2  // frame marking related
};

Profilers can query the capability bit map by calling the int ASGST_Capabilities() and should use the signal handler-based approach whenever the capability bit ASGST_REGISTER_QUEUE is absent. ASGST_MARK_FRAME foreshadows a new feature based on stack watermarks, see JEP 376, which I cover in a follow-up blog post. Calling an unsupported API method is undefined.

Now back to the actual API itself. The main two methods of the proposed API are ASGST_RegisterQueue and ASGST_Enqueue. You typically first register a queue for the current thread using ASGST_RegisterQueue, typically in a ThreadStart JVMTI event handler:

typedef void (*ASGST_Handler)(ASGST_Iterator*,
                              void* queue_arg,
                              void* arg);

// Register a queue to the current thread 
// (or the one passed via env)
// @param fun handler called at a safe point with iterators,
//   the argument for RegisterQueue and the argument 
//   passed via Enqueue
//
// The handler can only call safe point safe methods, 
// which excludes all JVMTI methods, but the handler 
// is not called inside a signal handler, so allocating 
// or obtaining locks is possible
//
// Not signal safe, requires ASGST_REGISTER_QUEUE capability
ASGST_Queue* ASGST_RegisterQueue(JNIEnv* env, int size, 
  int options, ASGST_Handler fun, void* argument);

A queue has a fixed size and has a registered handler, which is called for every queue item in insertion order at every safepoint, after which the queue elements are removed. Be aware that you cannot obtain the top frames using the queue handler and cannot call any JVMTI methods, but also that you aren’t bound to signal safe methods in the handler.

The ASGST_Enqueue method obtains and enqueues the top frame into the passed queue, as well as triggering a thread-local handshake/safepoint:

// Enqueue the processing of the current stack 
// at the end of the queue and return the kind 
// (or error if <= 0)
// you have to deal with the top C and native frames 
// yourself (but there is an option for this)
//
// @param argument argument passed through 
//   to the ASGST_Handler for the queue as the third argument
// @return kind or error, 
//   returns ASGST_ENQUEUE_FULL_QUEUE if queue is full
//   or ASGST_ENQUEUE_NO_QUEUE if queue is null
//
// Signal safe, but has to be called with a queue 
// that belongs to the current thread, or the thread
// has to be stopped during the duration of this call
// Requires ASGST_REGISTER_QUEUE capability
int ASGST_Enqueue(ASGST_Queue* queue, void* ucontext, 
  void* argument);

The passed argument is passed directly to the last parameter of the queue handler. Be aware of handling the case that the queue is full. Typically one falls back onto walking the stack in the signal handler or compressing the queue. The elements of a queue, including the arguments, can be obtained using the ASGST_GetQueueElement method:

// Returns the nth element in the queue (from the front),
// 0 gives you the first/oldest element.
// -1 gives you the youngest element, ..., -size the oldest.
//
// Modification of the returned element are allowed, 
// as long as the queue's size has not been modified 
// between the call to ASGST_GetQueueElement and the 
// modification (e.g. by calling ASGST_ResizeQueue).
//
// Modifiying anything besides the arg field
// is highly discouraged.
//
// @returns null if n is out of bounds
//
// Signal safe
ASGST_QueueElement* ASGST_GetQueueElement(ASGST_Queue* queue, 
  int n);

The critical detail is that modifying the arg field is supported; this allows us to do queue compression: In the signal handler, we obtain the last element in the queue using the ASGST_GetQueueElement method and then get the currently enqueuable element using ASGST_GetEnqueuableElement. We can then check whether both elements are equal and then update the argument, omitting to enqueue the current ucontext.

Another helper method is ASGST_ResizeQueue which can be used to set the queue size:

// Trigger the resizing of the queue at end of the next safepoint
// (or the current if currently processing one)
//
// Signal safe, but has to be called with a queue 
// that belongs to the current thread
// Requires ASGST_REGISTER_QUEUE capability
void ASGST_ResizeQueue(ASGST_Queue* queue, int size);

The current queue size and more can be obtained using ASGST_QueueSizeInfo:

typedef struct {
  jint size; // size of the queue
  jint capacity; // capacity of the queue
  jint attempts; // attempts to enqueue since last safepoint end
} ASGST_QueueSizeInfo;

// Returns the number of elements in the queue, its capacity,
// and the number of attempts since finishing the previous 
// safepoint
//
// Signal safe, but only proper values in queues thread
ASGST_QueueSizeInfo ASGST_GetQueueSizeInfo(ASGST_Queue* queue);

This returns the defined size/capacity, the current number of elements, and the number of enqueue attempts, including unsuccessful ones. This can be used in combination with ASGST_ResizeQueue to dynamically adjust the size of these queues.

One might want to remove a queue from a thread; this can be done using the non-signal safe method ASGST_DeregisterQueue.

Lastly, one might want to be triggered before and after a non-empty queue is processed:

// Handler that is called at a safe point with enqueued samples
// before and after processing
//
// called with the queue, a frame iterator, and the OnQueue 
// argument frame iterator is null if offerIterator at handler 
// registration was false
typedef void (*ASGST_OnQueueSafepointHandler)(ASGST_Queue*, 
                                              ASGST_Iterator*, 
                                              void*);

// Set the handler that is called at a safe point before 
// the elements in the (non-empty) queue are processed.
//
// @param before handler or null to remove the handler
//
// Not signal safe, requires ASGST_REGISTER_QUEUE capability
void ASGST_SetOnQueueProcessingStart(ASGST_Queue* queue, 
  int options, bool offerIterator, 
  ASGST_OnQueueSafepointHandler before, void* arg);

// Set the handler that is called at a safe point after 
// the elements in the (non-empty) queue are processed.
//
// @param after handler or null to remove the handler
//
// Not signal safe, requires ASGST_REGISTER_QUEUE capability
void ASGST_SetOnQueueProcessingEnd(ASGST_Queue* queue,
  int options, bool offerIterator, 
  ASGST_OnQueueSafepointHandler end, void* arg);

This should enable performance optimizations, enabling the profiler to walk the whole stack, e.g., only once per queue processing safepoint.

This is the whole API that can be found in my OpenJDK fork with the profile2.h header. The current implementation is, of course, a prototype; there are, e.g., known inaccuracies with native (C to Java) frames on which I’m currently working.

But how can we use this API? I use the same profiler from the AsyncGetCallTrace Reworked: Frame by Frame with an Iterative Touch! blog post to demonstrate using the new API.

Implementing a Small Profiler

The best thing: The code gets more straightforward and uses locks to handle concurrency. Writing code that runs at safepoints is far easier than code in signal handlers; the new API moves complexity from the profiler into the JVM.

But first, you have to build and use my modified OpenJDK as before. This JDK has been tested on x86 and aarch64. The profiler API implementation is still a prototype and contains known errors, but it works well enough to build a small profiler. Feel free to review the code; I’m open to help, suggestions, or sample programs and tests.

To use this new API, you have to include the profile2.h header file, there might be some linker issues on Mac OS, so add -L$JAVA_HOME/lib/server -ljvm to your compiler options.

Now to the significant changes to the version that walks the stack in the signal handler written for the previous blog post. First, we have to register a queue into every thread; we do this in the ThreadStart JVMTI event handler and store the result in a thread-local queue variable:

thread_local ASGST_Queue* queue;
// ...
void JNICALL
OnThreadStart(jvmtiEnv *jvmti_env,
            JNIEnv* jni_env,
            jthread thread) {
  // the queue is large, but aren't doing any  compression, 
  // so we need it
  queue = ASGST_RegisterQueue(jni_env, 10'000, 0, &asgstHandler, 
    (void*)nullptr);
  // ...
}

We then have to enqueue the last Java frames into the queue in the signal handler:

static void signalHandler(int signo, siginfo_t* siginfo, 
 void* ucontext) {
  totalTraces++;
  // queue has not been initialized
  if (queue == nullptr) {
    failedTraces++;
    return;
  }
  int res = ASGST_Enqueue(queue, ucontext, (void*)nullptr);
  if (res != 1) { // not Java trace
    failedTraces++;
    if (res == ASGST_ENQUEUE_FULL_QUEUE) {
      // we could do some compression here
      // but not in this example
      queueFullTraces++;
    }
  }
}

We record the total traces, the failed traces, and the number of times the queue had been full. The enqueued frames are processed using the asgstHandler method at every safepoint. This method obtains the current trace and stores it directly in the flame graph, acquiring the lock to prevent data races:

// we can acquire locks during safepoints
std::mutex nodeLock;
Node node{"main"};

void asgstHandler(ASGST_Iterator* iterator, void* queueArg, 
 void* arg) {
  std::vector<std::string> names;
  ASGST_Frame frame;
  int count;
  for (count = 0; ASGST_NextFrame(iterator, &frame) == 1 &&
         count < MAX_DEPTH; count++) {
    names.push_back(methodToString(frame.method));
  }
  // lets use locks to deal with the concurrency
  std::lock_guard<std::mutex> lock{nodeLock};
  node.addTrace(names);
}

That’s all. I might write a blog post on compression in the future, as the queues tend to fill up in wall-clock mode for threads that wait in native.

You can find the complete code on GitHub; feel free to ask any yet unanswered questions. To use the profiler, just run it from the command line as before:

java -agentpath:libSmallProfiler.so=output=flames.html \
  -cp samples math.MathParser

This assumes that you use the modified OpenJDK. MathParser is a demo program that generates and evaluates simple mathematical expressions. The resulting flame graph should look something like this:

Conclusion

The new API can be used to write profilers easier and walk stacks in a safe yet flexible manner. A prototypical implementation of the API showed accuracy comparable to AsyncGetCallTrace when we ignore the native frames. Using the queues offers ample opportunities for profile compression and incremental stack walking, only walking the new stacks for every queue element.

I want to come back to the quote from Erik that I wrote in the beginning, answering his concerns one by one:

Well the current proposal doesn’t have a clear story for
1) Making it safe
2) Working with virtual threads
3) Supporting incremental stack scanning
4) Supporting concurrent stack scanning

  1. Walking at Java frames at safepoints out of signal handlers makes the stack walking safer, and using improved method ids helps with the post-processing.
  2. Walking only at safepoints should make walking virtual threads possible; it is yet to be decided how to expose virtual threads in the API. But the current API is flexible enough to accommodate it.
  3. and 4. Stack watermarks allow profilers to implement incremental and concurrent stack walking, which should improve performance and offer the ability to compress stack traces—more on this in a future blog post.

Thank you for joining me on my API journey; I’m open to any suggestions; please reach me using the typical channels.

Just keep in mind:

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone. Thanks to Erik Österlund for the basic idea, and to Jaroslav Bachorik for all the feedback and help on the JEP.

AsyncGetCallTrace Reworked: Frame by Frame with an Iterative Touch!

AsyncGetCallTrace is an API to obtain the top n Java frames of a thread asynchronously in a signal handler. This API is widely used but has its problems; see JEP 435 and my various blog posts (AsyncGetStackTrace: A better Stack Trace API for the JVM, jmethodIDs in Profiling: A Tale of Nightmares, …). My original approach with my JEP proposal was to build a replacement of the API, which could be used as a drop-in for AsyncGetCallTrace: Still a single method that populates a preallocated frame list:

No doubt this solves a few of the problems, the new API would be officially supported, return more information, and could return the program counter for C/C++ frames. But it eventually felt more like a band-aid, hindered by trying to mimic AsyncGetCallTrace. In recent months, I had a few discussions with Erik Österlund and Jaroslav Bachorik in which we concluded that what we really need is a completely redesigned profiling API that isn’t just an AsyncGetCallTrace v2.

The new API should be more flexible, safer, and future-proof than the current version. It should, if possible, allow incremental stack scanning and support virtual threads. So I got to work redesigning and, more crucially, rethinking the profiling API inspired by Erik Österlunds ideas.

This blog post is the first of two blog posts covering the draft of a new iterator-based stack walking API, which builds the base for the follow-up blog post on safepoint-based profiling. The following blog post will come out on Wednesday as a special for the OpenJDK Committers’ Workshop.

Iterators

AsyncGetCallTrace fills a preallocated list of frames, which has the most profound expected stack trace length, and many profilers just store away this list. This limits the amount the data we can give for each frame. We don’t have this problem with an iterator-based API, where we first create an iterator for the current stack and then walk from frame to frame:

The API can offer all the valuable information the JVM has, and the profiler developer can pick the relevant information. This API is, therefore, much more flexible; it allows the profiler writer to …

  • … walk at frames without a limit
  • … obtain program counter, stack pointer, and frame pointer to use their stack walking code for C/C++ frames between Java frames
  • … use their compression scheme for the data
  • don’t worry about allocating too much data on the stack because the API doesn’t force you to preallocate a large number of frames

This API can be used to develop your version of AsyncGetCallTrace, allowing seamless integration into existing applications.

Using the API in a signal handler and writing it using C declarations imposes some constraints, which result in a slightly more complex API which I cover in the following section.

Proposed API

When running in a signal handler, a significant constraint is that we have to allocate everything on the stack. This includes the iterator. The problem is that we don’t want to specify the size of the iterator in the API because this iterator is based on an internal stack walker and is subject to change. Therefore, we have to allocate the iterator on the stack inside an API method, but this iterator is only valid in the method’s scope. This is the reason for the ASGST_RunWithIterator which creates an iterator and passes it to a handler:

// Create an iterator and pass it to fun alongside 
// the passed argument.
// @param options ASGST_INCLUDE_NON_JAVA_FRAMES, ...
// @return error or kind
int ASGST_RunWithIterator(void* ucontext, 
    int32_t options, 
    ASGST_IteratorHandler fun, 
    void* argument);

The iterator handler is a pointer to a method in which the ASGST_RunWithIterator calls with an iterator and the argument. Yes, this could be nicer in C++, which lambdas and more, but we are constrained to a C API. It’s easy to develop a helper library in C++ that offers zero-cost abstractions, but this is out-of-scope for the initial proposal.

Now to the iterator itself. The main method is ASGST_NextFrame:

// Obtains the next frame from the iterator
// @returns 1 if successful, else error code (< 0) / end (0)
// @see ASGST_State
//
// Typically used in a loop like:
//
// ASGST_Frame frame;
// while (ASGST_NextFrame(iterator, &frame) == 1) {
//   // do something with the frame
// }
int ASGST_NextFrame(ASGST_Iterator* iterator, ASGST_Frame* frame);

The frame data structure, as explained in the previous section, contains all required information and is far simpler than the previous proposal (without any union):

enum ASGST_FrameTypeId {
  ASGST_FRAME_JAVA         = 1, // JIT compiled and interpreted
  ASGST_FRAME_JAVA_INLINED = 2, // inlined JIT compiled
  ASGST_FRAME_JAVA_NATIVE  = 3, // native wrapper to call 
                                // C/C++ methods from Java
  ASGST_FRAME_NON_JAVA     = 4  // C/C++/... frames
};

typedef struct {
  uint8_t type;         // frame type
  int comp_level;       // compilation level, 0 is interpreted, 
                        // -1 is undefined, > 1 is JIT compiled
  int bci;              // -1 if the bci is not available 
                        // (like in native frames)
  ASGST_Method method;  // method or nullptr if not available
  void *pc;             // current program counter 
                        // inside this frame
  void *sp;             // current stack pointer 
                        // inside this frame, might be null
  void *fp;             // current frame pointer 
                        // inside this frame, might be null
} ASGST_Frame;

This uses ASGST_Method instead of jmethodID, see jmethodIDs in Profiling: A Tale of Nightmares for more information.

The error codes used both by ASGST_RunWithIterator and ASGST_NextFrame are defined as:

enum ASGST_Error {
  ASGST_NO_FRAME            =  0, // come to and end
  ASGST_NO_THREAD           = -1, // thread is not here
  ASGST_THREAD_EXIT         = -2, // dying thread
  ASGST_UNSAFE_STATE        = -3, // thread is in unsafe state
  ASGST_NO_TOP_JAVA_FRAME   = -4, // no top java frame
  ASGST_ENQUEUE_NO_QUEUE    = -5, // no queue registered
  ASGST_ENQUEUE_FULL_QUEUE  = -6, // safepoint queue is full
  ASGST_ENQUEUE_OTHER_ERROR = -7, // other error, 
                                  // like currently at safepoint
  // everything lower than -16 is implementation specific
};

ASGST_ENQUEUE_NO_QUEUE and ASGST_ENQUEUE_FULL_QUEUE are not relevant yet, but their importance will be evident in my next blog post.

This API wouldn’t be complete without a few helper methods. We might want to start from an arbitrary frame; for example, we use a custom stack walker for the top C/C++ frames:

// Similar to RunWithIterator, but starting from 
// a frame (sp, fp, pc) instead of a ucontext.
int ASGST_RunWithIteratorFromFrame(void* sp, void* fp, void* pc, 
  int options, ASGST_IteratorHandler fun, void* argument);

The ability to rewind an iterator is helpful too:

// Rewind an interator to the top most frame
void ASGST_RewindIterator(ASGST_Iterator* iterator);

And just in case you want to get the state of the current iterator or thread, there are two methods for you:

// State of the iterator, corresponding 
// to the next frame return code
// @returns error code or 1 if no error
// if iterator is null or at end, return ASGST_NO_FRAME,
// returns a value < -16 if the implementation encountered 
// a specific error
int ASGST_State(ASGST_Iterator* iterator);

// Returns state of the current thread, which is a subset
// of the JVMTI thread state.
// no JVMTI_THREAD_STATE_INTERRUPTED, 
// limited JVMTI_THREAD_STATE_SUSPENDED.
int ASGST_ThreadState();

But how can we use this API? I developed a small profiler in my writing, a profiler from scratch series, which we can now use to demonstrate using the methods defined before. Based on my Writing a Profiler in 240 Lines of Pure Java blog post, I added a flame graph implementation. In the meantime, you can also find the base implementation on GitHub.

Implementing a Small Profiler

First of all, you have to build and use my modified OpenJDK. This JDK has been tested on x86 and aarch64. The profiler API implementation is still a prototype and contains known errors, but it works well enough to build a small profiler. Feel free to review the code; I’m open to help, suggestions, or sample programs and tests.

To use this new API, you have to include the profile2.h header file, there might be some linker issues on Mac OS, so add -L$JAVA_HOME/lib/server -ljvm to your compiler options.

One of the essential parts of this new API is that, as it doesn’t use jmethodID, we don’t have to pre-touch every method (learn more on this in jmethodIDs in Profiling: A Tale of Nightmares). Therefore we don’t need to listen to ClassLoad JVMTI events or iterate over all existing classes at the beginning. So the reasonably complex code

static void JNICALL OnVMInit(jvmtiEnv *jvmti, 
 JNIEnv *jni_env, jthread thread) {
  jint class_count = 0;
  env = jni_env;
  sigemptyset(&prof_signal_mask);
  sigaddset(&prof_signal_mask, SIGPROF);
  OnThreadStart(jvmti, jni_env, thread);
  // Get any previously loaded classes 
  // that won't have gone through the
  // OnClassPrepare callback to prime 
  // the jmethods for AsyncGetCallTrace.
  JvmtiDeallocator<jclass> classes;
  ensureSuccess(jvmti->GetLoadedClasses(&class_count,
      classes.addr()), 
    "Loading classes failed")

  // Prime any class already loaded and 
  // try to get the jmethodIDs set up.
  jclass *classList = classes.get();
  for (int i = 0; i < class_count; ++i) {
    GetJMethodIDs(classList[i]);
  }

  startSamplerThread();
}

is reduced to just

static void JNICALL OnVMInit(jvmtiEnv *jvmti, JNIEnv *jni_env, 
 jthread thread) {
  sigemptyset(&prof_signal_mask);
  sigaddset(&prof_signal_mask, SIGPROF);
  OnThreadStart(jvmti, jni_env, thread);
  startSamplerThread();
}

improving the start-up/attach performance of the profiler along the way. To get from the new ASGST_Method identifiers to the method name we need for the flame graph, we don’t use the JVMTI methods but ASGST methods:

static std::string methodToString(ASGST_Method method) {
  // assuming we only care about the first 99 chars
  // of method names, signatures and class names
  // allocate all character array on the stack
  char method_name[100];
  char signature[100];
  char class_name[100];
  // setup the method info
  ASGST_MethodInfo info;
  info.method_name = (char*)method_name;
  info.method_name_length = 100;
  info.signature = (char*)signature;
  info.signature_length = 100;
  // we ignore the generic signature
  info.generic_signature = nullptr;
  // obtain the information
  ASGST_GetMethodInfo(method, &info);
  // setup the class info
  ASGST_ClassInfo class_info;
  class_info.class_name = (char*)class_name;
  class_info.class_name_length = 100;
  // we ignore the generic class name
  class_info.generic_class_name = nullptr;
  // obtain the information
  ASGST_GetClassInfo(info.klass, &class_info);
  // combine all
  return std::string(class_info.class_name) + "." + 
    std::string(info.method_name) + std::string(info.signature);
}

This method is then used in the profiling loop after obtaining the traces for all threads. But of course, by then, the ways may be unloaded. This is rare but something to consider as it may cause segmentation faults. Due to this, and for performance reasons, we could register class unload handlers and obtain the method names for the methods of unloaded classes therein, as well as obtain the names of all still loaded used ASGST_Methods when the agent is unattached (or the JVM exits). This will be a topic for another blog post.

Another significant difference between the new API to the old API is that it misses a pre-defined trace data structure. So the profiler requires its own:

struct CallTrace {
  std::array<ASGST_Frame, MAX_DEPTH> frames;
  int num_frames;

  std::vector<std::string> to_strings() const {
    std::vector<std::string> strings;
    for (int i = 0; i < num_frames; i++) {
      strings.push_back(methodToString(frames[i].method));
    }
    return strings;
  }
};

We still use the pre-defined frame data structure in this example for brevity, but the profiler could customize this too. This allows the profiler only to store the relevant information.

We fill the related global_traces entries in the signal handler. Previously we just called:

static void signalHandler(int signo, siginfo_t* siginfo, 
 void* ucontext) {
  asgct(&global_traces[available_trace++], 
    MAX_DEPTH, ucontext);
  stored_traces++;
}

But now we have to use the ASGST_RunWithIterator with a callback. So we define the callback first:

void storeTrace(ASGST_Iterator* iterator, void* arg) {
  CallTrace *trace = (CallTrace*)arg;
  ASGST_Frame frame;
  int count;
  for (count = 0; ASGST_NextFrame(iterator, &frame) == 1 && 
         count < MAX_DEPTH; count++) {
    trace->frames[count] = frame;  
  }
  trace->num_frames = count;
}

We use the argument pass-through from ASGST_RunWithIterator to the callback to pass the CallTrace instance where we want to store the traces. We then walk the trace using the ASGST_NextFrame method and iterate till the maximum count is reached, or the trace is finished.

ASGST_RunWithIterator itself is called in the signal handler:

static void signalHandler(int signo, siginfo_t* siginfo, 
 void* ucontext) {
  CallTrace &trace = global_traces[available_trace++];
  int ret = ASGST_RunWithIterator(ucontext, 0, 
              &storeTrace, &trace);
  if (ret >= 2) { // non Java trace
    ret = 0;
  }
  if (ret <= 0) { // error
    trace.num_frames = ret;
  }
  stored_traces++;
}

You can find the complete code on GitHub; feel free to ask any yet unanswered questions. To use the profiler, just run it from the command line:

java -agentpath:libSmallProfiler.so=output=flames.html \
  -cp samples math.MathParser

This assumes that you use the modified OpenJDK. MathParser is a demo program that generates and evaluates simple mathematical expressions. I wrote this for a compiler lab while I was still a student. The resulting flame graph should look something like this:

Conclusion

Using an iterator-based profiling API in combination with better method ids offers flexibility, performance, and safety for profiler writers. The new API is better than the old one, but it becomes even better. Get ready for the next blog post in which I tell you about safepoints and why it matters that there is a safepoint-check before unwinding any physical frame, which is the reason why I found a bug in The Inner Workings of Safepoints. So it will all come together.

Thank you for coming this far; I hope you enjoyed this blog post, and I’m open to any suggestions on my profiling API proposal.

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

The Inner Workings of Safepoints

A Java thread in the JVM regularly checks whether it should do extra work besides the execution of the bytecode. This work is done during so-called safepoints. There are two types of safepoints: local and global. At thread-local safepoints, also known as thread-local handshakes, only the current thread does some work and is therefore blocked from executing the application. At global safepoints, all Java threads are blocked and do some work. At these safepoints, the state of the thread (thread-local safepoints) or the JVM (global safepoints) is fixed. This allows the JVM to do activities like method deoptimizations or stop-the-world garbage collections, where the amount of concurrency should be limited.

But this blog post isn’t about what (global) safepoints are; for this, please refer to Nitsan Wakart’s and Seetha Wenner’s articles on this topic and for thread-local safepoints, which are a relatively recent addition to JEP 312. I’ll cover in this post the actual implementation of safepoints in the OpenJDK and present a related bug that I found along the way.

Update: FOSDEM talk

I gave a talk on the topic of this blog post at FOSDEM 2024’s Free Java Devroom:

Implementing Safepoint Checks

Global safepoints are implemented using thread-local safepoints by stopping the threads at thread-local safepoints till all threads reach a barrier (source code), so we only have thread-local checks. Therefore I’ll only cover thread-local safepoints here and call them “safepoints.”

The simplest option for implementing safepoint checks would be to add code like

if (thread->at_safepoint()) {
  SafepointMechanism::process();
}

to every location where a safepoint check should occur. The main problem is its performance. We either add lots of code or wrap it in a function and have a function call for every check. We can do better by exploiting the fact that the check often fails, so we can optimize for the fast path of “thread not at safepoint”. The OpenJDK does this by exploiting the page protection mechanisms of modern CPUs (source) in JIT compiled code:

The JVM creates a good and a bad page/memory area for every thread before a thread executes any Java code (source):

char* bad_page  = polling_page;
char* good_page = polling_page + page_size;

os::protect_memory(bad_page,  page_size, os::MEM_PROT_NONE);
os::protect_memory(good_page, page_size, os::MEM_PROT_READ);
//...
_poll_page_armed_value    = 
  reinterpret_cast<uintptr_t>(bad_page);
_poll_page_disarmed_value = 
  reinterpret_cast<uintptr_t>(good_page);

The good page can be accessed without issues, but accessing the protected bad page causes an error. os::protect_memory uses the mprotect method under the hood:

mprotect() changes the access protections for the calling
process's memory pages [...].

If the calling process tries to access memory in a manner that
violates the protections, then the kernel generates a SIGSEGV
signal for the process.

prot is a combination of the following access flags: PROT_NONE or
a bitwise-or of the other values in the following list:

  PROT_NONE     The memory cannot be accessed at all.
  PROT_READ     The memory can be read.
  PROT_WRITE    The memory can be modified.
[...]

Now every thread has a field _polling_page which points to either the good page (safepoint check fails) or the bad page (safepoint check succeeds). The segfault handler of JVM then calls the safepoint handler code. Handling segfaults is quite expensive, but this is only used on the slow path; the fast path consists only of reading from the address that _polling_page points to.

In addition to simple safepoints, which trigger indiscriminate of the current program state, Erik Österlund added functionality to parametrize safepoints with JEP 376: The safepoint can be configured to cause a successful safepoint only if the current frame is older than the specified frame, based on the frame pointer. The frame pointer of the specified frame is called a watermark.

Keep in mind that stacks grow from higher to lower addresses. But how is this implemented? It is implemented by adding a _polling_word field next to the _poll_page field to every thread. This polling word specifies the watermark and is checked in the safepoint handler. The configured safepoints are used for incremental stack walking.

The cool thing is that (source) that when enabling the regular safepoint, one sets the watermark to 1 and for disarming it to ~1 (1111...10), so the fp > watermark is always true when the safepoint is enabled (fp > 1 is always true) and false when disabled (fp > 111...10 is always false). Therefore, we can use the same checks for both kinds of safepoints.

More on watermarks and how they can be used to reduce the latency of garbage collectors can be found in the video by Erik:

Bug with Interpreted Aarch64 Methods

The OpenJDK uses multiple compilation tiers; methods can be interpreted or compiled; see Mastering the Art of Controlling the JIT: Unlocking Reproducible Profiler Tests for more information. A common misconception is that “interpreted” means that the method is evaluated by a kind of interpreter loop that has the basic structure:

for (int i = 0; i < byteCode.length; i++) {
  switch (byteCode[i].op) {
    case OP_1:
    ...
  }
}

The bytecode is actually compiled using a straightforward TemplateInterpreter, which maps every bytecode instruction to a set of assembler instructions. The compilation is fast because there is no optimization, and the evaluation is faster than a traditional interpreter.

The TemplateInterpreter adds safepoint checks whenever required, like method returns. All return instructions are mapped to assembler instructions by the TemplateTable::_return(TosState state) method. On x86, it looks like (source):

void TemplateTable::_return(TosState state) {
  // ...
  if (_desc->bytecode() == Bytecodes::_return_register_finalizer){
     // ... // finalizers
  }

  if (_desc->bytecode() != Bytecodes::_return_register_finalizer){
    Label no_safepoint;
    NOT_PRODUCT(__ block_comment("Thread-local Safepoint poll"));
    // ...
    __ testb(Address(r15_thread, 
               JavaThread::polling_word_offset()), 
             SafepointMechanism::poll_bit());
    // ...
    __ jcc(Assembler::zero, no_safepoint);
    __ push(state);
    __ push_cont_fastpath();
    __ call_VM(noreg, CAST_FROM_FN_PTR(address,
                        InterpreterRuntime::at_safepoint));
    __ pop_cont_fastpath();
    __ pop(state);
    __ bind(no_safepoint);
  }
  // ...
  __ remove_activation(state, rbcp);

  __ jmp(rbcp);
}

This adds the safepoint check using the simple method without page faults (for some reason, I don’t know why), ensuring that a safepoint check is done at the return of every method.

We can therefore expect that when a safepoint is triggered in the interpreted_method in

interpreted_method();
compiled_method();

that the safepoint is handled at least at the end of the method; in our example, the method is too small to have any other safepoints. Yet on my M1 MacBook, the safepoint is only handled in the compiled_method. I found this while trying to fix a bug in safepoint-dependent serviceability code. The cause of the problem is that the TemplateTable::_return(TosState state) is missing the safepoint check generation on aarch64 (source):

void TemplateTable::_return(TosState state)
{
  // ...
  if (_desc->bytecode() == Bytecodes::_return_register_finalizer){
    // ... // finalizers
  }

  // Issue a StoreStore barrier after all stores but before return
  // from any constructor for any class with a final field. 
  // We don't know if this is a finalizer, so we always do so.
  if (_desc->bytecode() == Bytecodes::_return)
    __ membar(MacroAssembler::StoreStore);

  // ...
  __ remove_activation(state);
  __ ret(lr);
}

And no the remove_activation method doesn’t check for the safepoint, it only checks for the safepoint (and therefore whether a watermark is set) and calls the InterpreterRuntime::at_unwind method to deal with unwinding of a frame which is related to a watermark. It does not call any safepoint handler related methods.

The same issue is prevalent in the OpenJDK’s riscv and arm ports. The real-world implications of this bug are minor, as the interpreted methods without any inner safepoint checks (in loops, calls to compiled methods, …) seldom run long enough to matter.

I’m neither an expert on the TemplateInterpreter nor on the different architectures. Maybe there are valid reasons to omit this safepoint check on ARM. But if there are not, then it should be fixed; I propose adding something like the following directly before if (_desc->bytecode() == Bytecodes::_return) for aarch64 (source):

  if (_desc->bytecode() != Bytecodes::_return_register_finalizer){
    Label slow_path;
    Label fast_path;
    __ safepoint_poll(slow_path, true /* at_return */,
         false /* acquire */, false /* in_nmethod */);
    __ br(Assembler::AL, fast_path);
    __ bind(slow_path);
    __ call_VM(CAST_FROM_FN_PTR(address, 
         InterpreterRuntime::at_safepoint), rthread);
    __ bind(fast_path);
  }

Update: Thanks to Leela Mohan Venati on Twitter for spotting that at_safepoint has to be called using call_VM and not super_call_VM_leaf, because at_safepoint is defined using JRT_ENTRY.

I’m happy to hear the opinion of any experts on this topic, the related bug is JBS-8313419.

Conclusion

Understanding the implementation of safepoints can be helpful when working on the OpenJDK. This blog post showed the inner workings, focusing on a bug in the TemplateInterpreter related to the safepoints checks.

Thank you for being with me on this journey down a rabbit hole, and see you next week with a blog post on profiling APIs.

This post is part of my work in the SapMachine team at SAP, making profiling easier for everyone. Thanks to Richard Reingruber, Matthias Baesken, Jaroslav Bachorik, Lutz Schmitz, and Aleksey Shipilëv for their invaluable input.

jmethodIDs in Profiling: A Tale of Nightmares

jmethodIDs identify methods in many low-level C++ JVM API methods (JVMTI). These ids are used in debugging related methods like SetBreakpoint(jvmtiEnv*,jmethodID,jlocation) and, of course, in the two main profiling APIs in the OpenJDK, GetStackTrace, and AsyncGetCallTrace (ASGCT):

JVMTI has multiple helper methods to get the methods name, signature, declaring class, modifiers, and more for a given jmethodID. Using these IDs is, therefore, an essential part of developing profilers but also a source of sorrow:

Honestly, I don’t see a way to use jmethodID safely.

Jaroslav Bachorik, profiler developer

In this blog post, I will tell you about the problems of jmethodID that keep profiler writers awake at night and how I intend to remedy the situation for profiler writers in JEP 435.

Background

But first: What are jmethodIDs, and how are they implemented?

[A jmethodID] identifies a Java programming language method, initializer, or constructor. jmethodIDs returned by JVMTI functions and events may be safely stored. However, if the class is unloaded, they become invalid and must not be used.

JVMTI SPECIFICATION

In OpenJDK, they are defined as pointers to an anonymous struct (source). Every Java method is backed by an object of the Method class in the JDK. jmethodIDs are actually just pointing to a pointer that points to the related method object (source):

This indirection creates versatility: The jmethodID stays the same when methods are redefined (see Instrumenting Java Code to Find and Handle Unused Classes for an example of a Java agent which redefines classes).

This is not true for jclass, the jmethodID pendant for classes that points directly to a class object:

The jclass becomes invalid if the class is redefined.

jmethodIDs are allocated on demand because they can stay with the JVM till the defining class is unloaded. The indirections for all ids are stored in the jmethodID cache of the related class (source). This cache has a lock to guard its parallel access from different threads, and the cache is dynamically sized (similar to the ArrayList implementation) to conserve memory.

OpenJ9 also uses an indirection (source), but my understanding of the code base is too limited to make any further claims, so the rest of the blog post is focused on OpenJDK. Now over to the problems for profiler writers:

Problems

The fact that jmethodIDs are dynamically allocated in resizable caches causes major issues: Common profilers, like async-profiler, use AsyncGetCallTrace, as stated in the beginning. ASGCT is used inside signal handlers where obtaining a lock is unsupported. So the profiler has to ensure that every method that might appear in a trace (essentially every method) has an allocated jmethodID before the profiling starts. This leads to significant performance issues when attaching profilers to a running JVM. This is especially problematic in OpenJDK 8:

[…] the quadratic complexity of creating new jmethodIDs during class loading: for every added jmethodID, HotSpot runs a linear scan through the whole list of previously added jmethodIDs trying to find an empty slot, when there are usually none. In extreme cases, it took hours (!) to attach async-profiler to a running JVM that had hundreds thousands classes: https://github.com/async-profiler/async-profiler/issues/221

Andrei Pangin, developer of Async-Profiler

A jmethodID becomes invalid when its defining class is unloaded. Still, there is no way for a profiler to know when a jmethodID becomes invalid or even get notified when a class is unloaded. So processing a newly observed jmethodID and obtaining the name, signature, modifiers, and related class, should be done directly after obtaining the id. But this is impossible as all accessor methods allocate memory and thereby cannot be used in signal handlers directly after AsyncGetCallTrace invocations.

As far as I know, methods can be unloaded concurrently to
the native code executing JVMTI functions. This introduces a potential race
condition where the JVM unloads the methods during the check->use flow,
making it only a partial solution. To complicate matters further, no method
exists to confirm whether a jmethodID is valid.

Theoretically, we could monitor the CompiledMethodUnload event to track
the validity state, creating a constantly expanding set of unloaded
jmethodID values or a bloom filter, if one does not care about few
potential false positives. This strategy, however, doesn’t address the
potential race condition, and it could even exacerbate it due to possible
event delays. This delay might mistakenly validate a jmethodID value that
has already been unloaded, but for which the event hasn’t been delivered
yet.

Honestly, I don’t see a way to use jmethodID safely unless the code using
it suspends the entire JVM and doesn’t resume until it’s finished with that
jmethodID. Any other approach might lead to JVM crashes, as we’ve
observed with J9.

Jaroslav Bachorik ON ThE OpenJDK MailingList

(Concurrent) class unloading, therefore, makes using all profiling APIs inherently unsafe.

jclass ids suffer from the same problems, but ses, we could just process all jmethodIDs and jclass ids, whenever a class is loaded and store all information on all classes, but this would result in a severe performance penalty, as only a subset of all methods actually appears in the observed traces. This approach feels more like a hack.

While jmethodIDs are pretty helpful for other applications like writing debuggers, they are unsuitable for profilers. As I’m currently in the process of developing a new profiling API, I started looking into replacements for jmethodIDs that solve all the problems mentioned before:

Solution

My solution to all these problems is ASGST_Method and ASGST_Class, replacements for jmethodID and jclass, with signal-safe helper methods and a proper notification mechanism for class, unloads, and redefinitions.

The level of indirection that jmethodID offers is excellent, but directly mapping ASGST_Method to method objects removes the problematic dynamic jmethodID allocations. The main disadvantage is that class redefinitions cause a method to have a new ASGST_Method id and a new ASGST_Class id. We solve this the same way JFR solves it:

We use a class local id (idnum) for every method and a JVM internal class idnum, which are both redefinition invariant. The combination of class and method idnum (cmId) is then a unique id for a method. The problem with this approach is that mapping a cmId to an ASGST_Method or a method object is prohibitively expensive as it requires the JVM to check all methods of all classes. Yet this is not a problem in the narrow space of profiling, as a self-maintained mapping from a cmId to collected method information is enough.

The primary method for getting the method information, like name and signature, is ASGST_GetMethodInfo in my proposal:

// Method info
// You have to preallocate the strings yourself 
// and store the lengths in the appropriate fields, 
// the lengths are set to the respective
// string lengths by the VM, 
// be aware that strings are null-terminated
typedef struct {
  ASGST_Class klass;
  char* method_name;
  jint method_name_length;
  char* signature;
  jint signature_length;
  char* generic_signature;
  jint generic_signature_length;
  jint modifiers;
  jint idnum; // class local id, doesn't change with redefinitions
  jlong class_idnum; // class id that doesn't change
} ASGST_MethodInfo;

// Obtain the method information for a given ASGST_Method and 
// store it in the pre-allocated info struct.
// It stores the actual length in the *_len fields and 
// a null-terminated string in the string fields.
// A field is set to null if the information is not available.
//
// Signal safe
void ASGST_GetMethodInfo(ASGST_Method method,
                         ASGST_MethodInfo* info);

jint ASGST_GetMethodIdNum(ASGST_Method method);

The similar ASGST_Class related is ASGST_GetClassInfo:

// Class info, like the method info
typedef struct {
  char* class_name;
  jint class_name_length;
  char* generic_class_name;
  jint generic_class_name_length;
  jint modifiers;
  jlong idnum; // id, doesn't change with redefinitions
} ASGST_ClassInfo;

// Similar to GetMethodInfo
//
// Signal safe
void ASGST_GetClassInfo(ASGST_Class klass,
                        ASGST_ClassInfo* info);

jlong ASGST_GetClassIdNum(ASGST_Class klass);

Both methods return a subset of the information available through JVMTI methods. The only information missing that is required for profilers is the mapping from method byte-code index to line number:

typedef struct {
  jint start_bci;
  jint line_number;
} ASGST_MethodLineNumberEntry;

// Populates the method line number table, 
// mapping BCI to line number.
// Returns the number of written elements
//
// Signal safe
int ASGST_GetMethodLineNumberTable(ASGST_Method method, 
  ASGST_MethodLineNumberEntry* entries, int length); 

All the above methods are signal safe so the profiler can process the methods directly. Nonetheless, I propose conversion methods so that the profiler writer can use jmethodIDs and jclass ids whenever needed, albeit with the safety problems mentioned above:

jmethodID ASGST_MethodToJMethodID(ASGST_Method method);

ASGST_Method ASGST_JMethodIDToMethod(jmethodID methodID);

jclass ASGST_ClassToJClass(ASGST_Class klass);

ASGST_Class ASGST_JClassToClass(jclass klass);

The last part of my proposal deals with invalid class and method ids: I propose a call-back for class unloads, and redefinitions, which is called shortly before the class and the method ids become invalid. In this handler, the profiler can execute its own code, but no JVMTI methods and only the ASGST_* methods that are signal-safe.

Remember that the handler can be executed concurrently, as classes can be unloaded concurrently. Class unload handlers must have the following signature:

void ASGST_ClassUnloadHandler(ASGST_Class klass, 
  ASGST_Method *methods, int count, bool redefined, void* arg);

These handlers can be registered and deregistered:

// Register a handler to be called when class is unloaded
//
// not signal and safe point safe
void ASGST_RegisterClassUnloadHandler(
  ASGST_ClassUnloadHandler handler, void* arg);

// Deregister a handler to be called when a class is unloaded
// @returns true if handler was present
//
// not signal and safe point safe
bool ASGST_DeregisterClassUnloadHandler(
  ASGST_ClassUnloadHandler handler, void* arg);

The arg parameter is passed directly to the handler as context information. This is due to the non-existence of proper closures or lambdas in C.

You might wonder we my API would allow multiple handlers. This is because a JVM should support multiple profilers at once.

Conclusion

jmethodIDs are unusable for profiling and cause countless errors, as every profiler will tell you. In this blog post, I offered a solution I want to integrate into the new OpenJDK profiling API (JEP 435). My proposal provides the safety that profiler writers crave. If you have any opinions on this proposal, please let me know. You can find a draft implementation can be found on GitHub.

See you next week with a blog post on safe points and profiling.

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone. Thanks to Martin Dörr, Andrei Pangin, and especially Jaroslav Bachorik for their invaluable input on my proposal and jmethodIDs.

Debugging OpenJDK Tests in VSCode Without Losing Your Mind

Consider you want to debug a test case of the JDK like serviceability/AsyncGetCallTrace. This test, and many others, are implemented using the Regression Test Harness for the JDK (jtreg):

jtreg is the test harness used by the JDK test framework. This framework is intended primarily for regression tests. It can also be used for unit tests, functional tests, and even simple product tests — in other words, just about any type of test except a conformance test, which belong in a TCK.

As well as API tests, jtreg is designed to be well suited for running both positive and negative compiler tests, simple manual GUI tests, and (when necessary) tests written in shell script. jtreg also takes care of compiling tests as well as executing them, so there is no need to precompile any test classes.

https://openjdk.org/jtreg/

JTREG is quite powerful, allowing you to combine C++ and Java code, but it makes debugging the C++ parts hard. You could, of course, just debug using printf. This works but also requires lots of recompiles during every debugging session. Attaching a debugger like gdb is possible but rather cumbersome, especially if you want to bring this into a launch.json to enable debugging in VSCode.

But worry no more: My new vsreg utility will do this for you 🙂 You can obtain the tool by just cloning its GitHub repository:

git clone https://github.com/parttimenerd/vsreg

Then pass the make test command to it, which you use to run the test that you want to debug:

vsreg/vsreg.py "ASGCT debug" -- make test TEST=jtreg:test/hotspot/jtreg/serviceability/AsyncGetCallTrace JTREG="VERBOSE=all"

Be sure always to pass JTREG="VERBOSE=all": vsreg executes the command, parses the output, and adds a launch config with the label “ASGCT debug” to the .vscode/launch.json file in the current folder.

The utility is MIT licensed and only tested on Linux. Update: Works also on Mac with lldb.

Example Usage

You’re now able to select “ASGCT debug” in “Run and Debug”:

You can choose the launch config and run the jtreg test with a debugger:

The debugger pauses on a segfault, but there are always a few at the beginning of the execution that can safely be ignored. We can use the program’s pause to add a break-point at an interesting line. After hitting the break-point, we’re able to inspect the local variables…

… and do things like stepping over a line:

Recompilation

If you want to recompile the tests, use make images test-image. You can add a task to your .vscode/tasks.json file and pass the label to the --build-task option:

{
  "version": "2.0.0",
  "tasks": [
    {
      "label": "Make test-image",
      "type": "shell",
      "options": {

          "cwd": "${workspaceFolder}"
      },
      "command": "/usr/bin/gmake",
      "args": ["images", "test-image"],
      "problemMatcher": ["$gcc"]
    }
  ]
}

Options

vsreg has a few options:

usage: vsreg.py [-h] [-t TEMPLATE] [-d] [-b TASK] LABEL COMMAND [COMMAND ...]

Create a debug launch config for a JTREG test run

positional arguments:
  LABEL                 Label of the config
  COMMAND               Command to run

options:
  -h, --help            show this help message and exit
  -t TEMPLATE, --template TEMPLATE
                        Template to use for the launch config, 
                        or name of file without suffix in 
                        vsreg/template folder
  -d, --dry-run         Only print the launch config
  -b TASK, --build-task TASK
                        Task to run before the command

An example template looks like this:

{
  "name": "$NAME",
  "type": "cppdbg",
  "request": "launch",
  "program": "",
  "args": [],
  "stopAtEntry": false,
  "cwd": "",
  "environment": [],
  "externalConsole": false,
  "MIMode": "gdb",
  "miDebuggerPath": "/usr/bin/gdb",
  "setupCommands": [
    {
      "description": "Enable pretty-printing for gdb",
      "text": "-enable-pretty-printing",
      "ignoreFailures": true
    },
    {   
      "description": "The new process is debugged after a fork. The parent process runs unimpeded.",
      "text": "-gdb-set follow-fork-mode child",
      "ignoreFailures": true
    }
  ],
  "preLaunchTask": ""
}

vsreg fills in $NAME (with the label), program (with the used Java binary), args, cwd, environment and preLaunchTask.

Conclusion

vsreg is one of these utilities that solve one specific itch: I hope it also helps others; feel free to contribute to this tool, adding new templates and other improvements on GitHub.

The tool is inspired by bear, “a tool that generates a compilation database for clang tooling.”

If you’re wondering why I have a renewed interest in debugging: I’m working full-time on a new proof-of-concept implementation related to JEP 435.

Update 14th July

vsreg now supports creating debug launch configurations for arbitrary commands, e.g. vsreg/vsreg.py "name" -- command, and supports mac os with LLDB. I use this tool daily at work, so feel free to submit any suggestions, I’m happy to further extend this tool.

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

Class Loader Hierarchies

Understanding class loader hierarchies is essential when developing Java agents, especially if these agents are instrumenting code. In my Instrumenting Java Code to Find and Handle Unused Classes post, I instrumented all classes with an agent and used a Store class in this newly added code:

A challenge here is that all instrumented classes will use the Store. We, therefore, have to put the store onto the bootstrap classpath, making it visible to all classes.

Class loaders are responsible for (possibly dynamically) loading classes, and they form a hierarchy:

A class loader is an object that is responsible for loading classes. The class ClassLoader is an abstract class. Given the binary name of a class, a class loader should attempt to locate or generate data that constitutes a definition for the class. A typical strategy is to transform the name into a file name and then read a “class file” of that name from a file system.

[…]

The ClassLoader class uses a delegation model to search for classes and resources. Each instance of ClassLoader has an associated parent class loader. When requested to find a class or resource, a ClassLoader instance will usually delegate the search for the class or resource to its parent class loader before attempting to find the class or resource itself.

ClassLoader Documentation

An application has multiple class loaders:

A typical Java application has a bootstrap class loader (internal JDK classes and the ClassLoader class itself, implemented in C++ code), a platform classloader (all other JDK classes), and an application/system class loader (application classes):

  • Bootstrap class loader. It is the virtual machine’s built-in class loader, typically represented as null, and does not have a parent.
  • Platform class loader. The platform class loader is responsible for loading the platform classes. Platform classes include Java SE platform APIs, their implementation classes and JDK-specific run-time classes that are defined by the platform class loader or its ancestors. The platform class loader can be used as the parent of a ClassLoader instance. […]
  • System class loader. It is also known as application class loader and is distinct from the platform class loader. The system class loader is typically used to define classes on the application class path, module path, and JDK-specific tools. The platform class loader is the parent or an ancestor of the system class loader, so the system class loader can load platform classes by delegating to its parent.
ClassLoader Documentation

An application might create more class loaders to load classes, e.g., from JARs or do some access control; these classes typically have the application class loader as their parent.

Classes loaded by the application class loader (or children of it) can reference JDK classes but not vice versa. This leads to the problem mentioned before. We can mitigate this by putting all classes that our instrumentation-generated code uses into a runtime JAR which we then “put” on the bootstrap class path.

But we don’t put it there but instead tell the bootstrap class loader to also look into our runtime JAR when looking for a class. We do this by using the method void appendToBootstrapClassLoaderSearch(JarFile jarfile) of the Instrumentation class:

Specifies a JAR file with instrumentation classes to be defined by the bootstrap class loader.

When the virtual machine’s built-in class loader, known as the “bootstrap class loader”, unsuccessfully searches for a class, the entries in the JAR file will be searched as well.

This method may be used multiple times to add multiple JAR files to be searched in the order that this method was invoked.

Instrumentation Documentation

But the documentation also tells us that you can create a giant mess when you aren’t careful, including only the minimal number of required classes in the added JAR:

The agent should take care to ensure that the JAR does not contain any classes or resources other than those to be defined by the bootstrap class loader for the purpose of instrumentation. Failure to observe this warning could result in unexpected behavior that is difficult to diagnose. For example, suppose there is a loader L, and L’s parent for delegation is the bootstrap class loader. Furthermore, a method in class C, a class defined by L, makes reference to a non-public accessor class C$1. If the JAR file contains a class C$1 then the delegation to the bootstrap class loader will cause C$1 to be defined by the bootstrap class loader. In this example an IllegalAccessError will be thrown that may cause the application to fail. One approach to avoiding these types of issues, is to use a unique package name for the instrumentation classes.

Instrumentation Documentation

You have to append the classes to the search path before (!) the first reference of the classes, as a class that cannot be resolved when first referenced will never be adequately resolved.

If you want to learn more on how to write an agent, consider reading my Instrumenting Java Code to Find and Handle Unused Classes blog post or watching my talk Instrument to Remove: Using Java agents for fun and profit at the Gulasch Programmier Nacht at June the 10th (a live stream and recordings will be available).

More information on class loaders can be found in the Baeldung article Class Loaders in Java.

How to get the class loader hierarchy of your project

I wanted to know the class loader hierarchy for my own projects, so of course, I wrote an agent for it: The ClassLoader Hierarchy Agent prints the class loader hierarchy at agent load time, the JVM shutdown, and in regular intervals.

Its usage is quite simple. Just attach it to a JVM or add it at startup:

Usage: java -javaagent:classloader-hierarchy-agent.jar[=maxPackages=10,everyNSeconds=0] <main class>
  maxPackages: maximum number of packages to print per classloader
  every: print the hierarchy every N seconds (0 to disable)

For the finagle-http renaissance benchmark, the agent, for example, prints the following when the benchmark is in full swing:

[root]
  platform
       java.sql
       sun.util.resources.provider
       sun.text.resources.cldr.ext
       sun.util.resources.cldr.provider
    app
         me.bechberger               # class loader hierarchy agent 
         org.renaissance             # benchmark harness code
         org.renaissance.core
      null                           # the actual benchmark
        Thread: finagle/netty4/boss-1
           scala
           scala.collection
           scala.jdk
           scala.io
           scala.runtime

The root node is the bootstrap class loader. For every class loader, it gives us a thread that uses it as its primary class loader, a short list of packages associated with the class loader, and its child class loaders.

Class loaders can have names, but sadly not many class loader creators use this feature, which turns understanding the individual class loader hierarchies into a guessing game. This is especially the case for Spring based applications like the Spring PetClinic:

[root]  
  platform
       java.sql
       javax.sql
       sun.security.ec
       sun.security.jgss
       sun.security.smartcardio
    app
      Thread: main
         me.bechberger
         jdk.jshell.execution.impl
         org.springframework.boot.loader
         jdk.internal.org.jline
         org.springframework.boot.loader.jar
      null
        Thread: mysql-cj-abandoned-connection-cleanup
           jakarta.servlet
           jakarta.validation
           org.postgresql
           jakarta.transaction
           jakarta.el

Feel free to try this agent on your applications; maybe you gain some new insights.

Conclusion

Understanding class loader hierarchies helps to understand subtle problems in writing instrumenting agents. Knowing how to write small agents can empower you to write simple tools to understand the properties of your application.

I hope this blog post helped you to understand class loader hierarchies and agents a little bit better. I’m writing it in a lovely park in Milan:

After giving a talk at JUG Milano on profiling on Wednesday:

Next week, I will write a short article on my talk (with slides and the recording). If you live near Munich, you can attend my talk Write your own Java Profiler in 240 lines of pure Java on Monday, June 5th.

As always, feel free to fork my code, share my article, and send suggestions or corrections; see you next week, either on my blog or in person.

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

Mastering the Art of Controlling the JIT: Unlocking Reproducible Profiler Tests

In my last blog post, I hinted Using Async-Profiler and Jattach Programmatically with AP-Loader, that I’m currently working on a test library for writing better profiling API tests. The library is still work-in-progress, but it already allows you to write profiling API tests in plain Java:

private int innerASGCT2() {
    new Tracer().runASGCT().assertTrue(
        Frame.hasMethod(0, "innerASGCT2", "()I"), 
        Frame.hasMethod(1, "testRunASGCT2"));
    return 0;
}

@Test
public void testRunASGCT2() {
    innerASGCT2();
}

This test case checks that calling AsyncGetCallTrace gives the correct result in this specific example. The test library allows you to write tests comparing the returns of multiple GetStackTrace, AsyncGetCallTrace, and AsyncGetStackTrace invocations in different modes and settings. The library can be found as trace-tester on GitHub; I aim to bring it into the OpenJDK later with my JEP.

Writing small test cases this way is great, but it would be even better if we could force specific methods to be compiled, interpreted, or inlined so that we can test different scenarios. The proposed AsyncGetStackTrace will return the compilation level directly for every frame, so it is necessary to check the correctness of the level too.

Consider reading my Validating Java Profiling APIs post to get a different angle on profiling API testing.

Introduction

Before I start with discussing the ways you can force methods to be compiled, interpreted, or inlined, I’ll have to clarify that:

  1. The following only works with the HotSpot tired JIT compiler and not other JVM’s like OpenJ9 (see issue #11272)
  2. It should only be used for testing. I would refrain from using it anywhere near production, even if you know that specific methods should be compiled. Use a tool like JITWatch by Chris Newland to check whether the JVM doesn’t make the correct decisions automatically: Ask your fellow JVM expert how to deal with this.
  3. I’m not an expert in the APIs I’m showing you, nor in tiered compilation, so be aware that I might be missing something, but I’m happy for any suggestions and corrections.
  4. There are four different compilation levels, but I’m subsuming all C1 variants under the C1 label because some of my used techniques only work on the C1/C2/inlined level. You can read more on tiered compilation in articles like Tiered Compilation in JVM on Baeldung.

Now that I finished the obligatory disclaimer: What are the stages in the life of a method with a tiered JIT?

The first time the JVM executes a method, the method’s byte code is interpreted without compilation. This allows the JVM to gather information on the method, as C1 and C2 are profile guided.

The method is then compiled when the JVM deems this to be beneficial, usually after the method has been executed a few times. The next call of the method will then use the compiled version. The method is initially compiled with different levels of the C1 compiler before finally being C2 compiled, which takes the longest but produces the best native instructions.

The JVM might decide at any point to use the interpreted version of a method by deoptimizing it. The compiled versions are kept, depending on the compiler and the reasons for the deoptimization.

Every compiler can decide to inline called methods of a currently compiled method. A compiler uses the initial byte code for this purpose.

What we want and what we get

The ideal would be to tell the JVM to just use a method in its compiled version, e.g.:

But this is not possible, as the JVM does not have any information it needs for compilation before the first execution of a method. We, therefore, have first to execute the method (or the benchmark) and then set the compilation level:

How do we get it?

We can split the task of forcing a method to be compiled (or inlined, for that matter) into two parts:

  1. Force all methods into their respective state (→ WhiteBox API) after the initial execution.
  2. Force the JIT to never compile a method with a different compiler (→ Compiler Control)

The following is the modified state diagram when forcing a method to be C1 compiled:

In the following, I’ll discuss how to use both the WhiteBox API and Compiler Control to facilitate the wanted behavior.

WhiteBox API

Many JVM tests are written in the JTreg framework, allowing developers to write these tests in Java. But these tests often require specific functionality not regularly available to Java developers. This functionality is exported in the WhiteBox API:

One of the not so well-known tools of the HotSpot VM is its WhiteBox testing API. Introduced in Java 7 it has been significantly improved and extended in Java 8 and 9. It can be used to query or change HotSpot internals which are not otherwise exposed to Java-land. While its features make it an indispensable tool for writing good HotSpot regression tests, it can also be used for experiments or for the mere fun of peeking into the VM. This entry will focus on the usage of the WhiteBox API in Java 8 and 9.

The WhiteBox API is implemented as a Java class (called sun.hotspot.WhiteBox) which defines various entry points into the HotSpot VM. Most of the functionality is implemented natively, directly in the HotSpot VM. The API is implemented as a singleton which can be easily retrieved by calling the static method WhiteBox.getWhiteBox().

Unfortunately, currently even a simple JavaDoc documentation of the API doesn’t exist, so in order to make full use of its functionality, you’ll have to peek right into WhiteBox.java.

The WhiteBox testing API

This API can be used outside of JTreg tests after enabling it by passing -Xbootclasspath/a:wb.jar -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI as JVM arguments. To use it, you have to build the WhiteBox JAR from scratch for your specific JVM by calling make build-test-lib (after you set up the build via the configure script).

But please be aware that using this API outside of JVM tests is relatively rare, and the documentation is still non-existent, so using it entails reading a lot of JDK sources and experimentation.

The build target did not work in JDK 21, and when I fixed it, the first question in the PR was by Daniel Jelinski, who asked:

That’s interesting. How did you find this? Is the result of this target used anywhere?
As far as I could tell, the build-test-lib target itself is not used anywhere. The classes that fail to compile here are used by tests without any problems – each test specifies the necessary imports individually. Should we remove this make target instead?

8307732: build-test-lib is broken #13885

So it would be best if you certainly did not depend on it.

The WhiteBox API consists of the singleton class jdk.test.whitebox.WhiteBox which offers many methods: From GC related methods like boolean isObjectInOldGen(Object o) and void fullGC() to NMT-related methods like long NMTMalloc(long size) and JIT-related methods like void deoptimizeAll().

You can even use it to force the compilation of a method and to set JVM flags, as shown in this example by Jean-Philippe Bempel:

public class WhiteBoxTest {
    static WhiteBox wb = WhiteBox.getWhiteBox();

    private void m() {
        System.out.println("foo");
    }

    public static void main(String[] args) throws Exception {
        wb.setBooleanVMFlag("PrintCompilation", true);
        wb.setBooleanVMFlag("BackgroundCompilation", false);
        wb.enqueueMethodForCompilation(
          WhiteBoxTest.class.getDeclaredMethod("m", null), 4);
    }
}

This is from his blog post WhiteBox API, the only blog post I could find on this topic.

Back to our goal of forcing the compilation of a method. It is a good idea to reset the state of a method and deoptimize it to start from a blank slate:

// obtain a method reference
Executable m = X.class.getDeclaredMethod("m", null);
// obtain a WhiteBox instance
WhiteBox wb = WhiteBox.getWhiteBox();
// deooptimize the method
wb.deoptimizeMethod(m);
// clear its state, found by experimentation to be neccessary
wb.clearMethodState(m);

We can then either leave the method uncompiled (for compilation level 0) or enqueue for compilation:

// level 1 - 3: C1, level 4: C2
wb.enqueueMethodForCompilation(m, level);

But be aware that it takes some time to actually compile the method, so it’s best to wait till it is compiled:

while (wb.getMethodCompilationLevel(m) != level) {
    Thread.sleep(1);
}

We can then also force a method to be never inlined:

wb.testSetDontInlineMethod(m, true);
wb.testSetForceInlineMethod(m, false);

Or inversely to be always inlined:

wb.testSetDontInlineMethod(m, false);
wb.testSetForceInlineMethod(m, true);

I implemented this in the WhiteBoxUtil class in my trace-tester library. This allows us to force all methods in their respective states. But the JVM can still decide to optimize further or inline a method, even when specifying the contrary. So we have to force the JVM using the second the Compiler Control specifications.

Compiler Control

This control mechanism has been introduced in Java 9 with JEP 165 by Nils Eliasson:

Summary

This JEP proposes an improved way to control the JVM compilers. It enables runtime manageable, method dependent compiler flags. (Immutable for the duration of a compilation.)

Goals

  • Fine-grained and method-context dependent control of the JVM compilers (C1 and C2)
  • The ability to change the JVM compiler control options in run time
  • No performance degradation

Motivation

Method-context dependent control of the compilation process is a powerful tool for writing small contained JVM compiler tests that can be run without restarting the entire JVM. It is also very useful for creating workarounds for bugs in the JVM compilers. A good encapsulation of the compiler options is also good hygiene.

JEP 165

This mechanism is properly standardized for the OpenJDK, unlike the WhiteBox APi. The compiler control allows to specify compilation settings by defining them in a JSON file and applying them:

  • Using jcmd (see JEP): jcmd <pid> Compiler.add_directives <file>
  • Passing it via JVM arguments: -XX:+UnlockDiagnosticVMOptions -XX:CompilerDirectivesFile=<file>
  • Using the WhiteBox API: int addCompilerDirective(String compDirect)

The following directives specify as an example that the method m should not be C2 compiled and not be inlined:

[
  {
    // can also contain patterns
    "match": ["X::m()"],
    // "-" prefixes not inlined, "+" inlined methods
    "inline": ["-X::m()"],
    "C1": {},
    "C2": {
      "Exclude": true
    }
  }
  // multiple directives supported
  // first directives have priority
]

This, in theory, allows the method to be deoptimized, but this did not happen during my testing. With forced compilation, one can assume that this method will almost be used in its compiled form.

I recommend this Compiler Control guide for a more in-depth guide with all options. An implementation of the control file generation with a fluent API can be found in the trace-tester project in the CompilerDirectives class. Feel free to adapt this for your own projects.

Conclusion

I’ve shown you in this article how to control the JIT to specify the inlining and compilation of methods using two lesser-known JVM APIs. This allows us to write reproducible profiling APIs and makes it easier to check how a profiling API reacts to different scenarios.

If you have any suggestions, feel free to reach out. I look forward to preparing slides for my upcoming talks in Milan, Munich, Arnhem, and Karlsruhe. Feel free to come to my talks; more information soon on Twitter.

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

Using Async-Profiler and Jattach Programmatically with AP-Loader

Using async-profiler and jattach can be quite a hassle. First, you have to download the proper archive from GitHub for your OS and architecture; then, you have to unpack it and place it somewhere. It gets worse if you want to embed it into your library, agent, or application: Library developers cannot just use maven dependency but have to create wrapper code and build scripts that deal with packaging the binaries themselves, or worse, they depend on a preinstalled version which they do not control.

In November 2022, I started the ap-loader project to remedy this situation: I wrapped async-profiler and jattach in a platform-independent JAR which can be pulled from maven central. I already wrote a blog post on its essential features: AP-Loader: A new way to use and embed async-profiler.

Flamegraph for a recording of profiling data for the dacapo benchmark suite

In this blog post, I’m focusing on its programmatic usage: Async-profiler can be used in a library to gather profiling data of the current or a different process, but the profiler distribution contains more: It contains converters to convert from JFR to flamegraphs, and jattach to attach a native agent dynamically to (potentially the current) JVM and send commands to it.

This blog post does assume that you’re familiar with the basic usage of async-profiler. If you are not, consider reading the async-profiler README or the Async-profiler – manual by use cases by Krzysztof Ślusarski.

The ap-loader library allows you to depend on a specific version of async-profiler using gradle or maven:

<dependency>
    <groupId>me.bechberger</groupId>
    <artifactId>ap-loader-all</artifactId>
    <version>2.9-5</version>
</dependency>

There are multiple maven artifacts: ap-loader-all which contains the native libraries for all platforms for which async-profiler has pre-built libraries and artifacts that only support a single platform like ap-loader-macos. I recommend using the ap-loader-all if you don’t know what you’re doing, the current release is still tiny, with 825KB.

The version number consists of the async-profiler version and the version (here 2.9) of the ap-loader support libraries (here 5). I’m typically only publishing the newest ap-loader version for the latest async-profiler. The changes in ap-loader are relatively minimal, and I keep the API stable between versions.

The ap-loader library consists of multiple parts:

  • AsyncProfilerLoader class: Wraps async-profiler and jattach, adding a few helper methods
  • converter package: Contains all classes from the async-profiler converter JAR and helps to convert between multiple formats
  • AsyncProfiler class: API for async-profiler itself, wrapping the native library.

All but the AsyncProfilerLoader class is just copied from the underlying async-profiler release. ap-loader contains all Java classes from async-profiler, but I omit the helper classes here for brevity.

AsyncProfilerLoader

This is the main entry point to ap-loader; it lives in the one.profiler package like the AsyncProfiler class. Probably the most essential method is load:

Load

The load method loads the included async-profiler library for the current platform:

AsyncProfiler profiler = AsyncProfilerLoader.load();

It returns the instantiated API wrapper class. The method throws an IllegalStateException if the present ap-loader dependencies do not support the platform and an IOException if loading the library resulted in other problems.

Newer versions of the AsyncProfiler API contain the AsyncProfiler#getInstance() method, which can also load an included library. The main difference is that you have to include the native library for all the different platforms, replicating all the work of the ap-loader build system every time you update async-profiler.

Dealing with multiple platforms is hard, and throwing an exception when not supporting a platform might be inconvenient for your use case. AsyncProfilerLoader has the loadOrNull method which returns null instead and also the isSupported to check whether the current combination of OS and CPU is supported. A typical use case could be:

if (AsyncProfilerLoader.isSupported()) {
  AsyncProfilerLoader.load().start(...);
} else {
  // use JFR or other fall-backs
}

This might still throw IOExceptions, but they should never happen in normal circumstances and are probably by problems that should be investigated, being either an error in ap-loader or in your application.

If you want to merely get the path to the extracted libAsyncProfiler, then use the getAsyncProfilerPath method which throws the same exceptions as the load method. A similar method exists for jattach (getJattachPath).

Execute Profiler

The async-profiler project contains the profiler.sh script (will be replaced by asprof starting with async-profiler 2.10):

To run the agent and pass commands to it, the helper script profiler.sh is provided. A typical workflow would be to launch your Java application, attach the agent and start profiling, exercise your performance scenario, and then stop profiling. The agent’s output, including the profiling results, will be displayed in the Java application’s standard output.

Async-Profiler documentation

This helper script is also included in ap-loader and allows you to use the script on the command-line via java -jar ap-loader profiler ..., the API exposes this functionality via ExecutionResult executeProfiler(String... args).

AsyncProfilerLoader.executeProfiler("-e", "wall", "8983")
// is equivalent to
./profiler.sh -e wall -t -i 5ms -f result.html 8983

The executeProfiler method throws an IllegalStateException if the current platform is not supported. The returned instance of ExecutionResult contains the standard and error output:

public static class ExecutionResult {
  private final String stdout;
  private final String stderr;
    // getter and constructor
    ...
}

executeProfiler throws an IOException if the profiler execution failed.

Execute Converter

You cannot only use the converter by using the classes from the one.profiler.converter, but you can also execute the converter by calling ExecutionResult executeProfiler(String... args), e.g., the following:

AsyncProfilerLoader.executeConverter(
  "jfr2flame", "<input.jfr>", "<output.html>")
// is equivalent to
java -cp converter.jar \
  jfr2flame <input.jfr> <output.html>

The executeConverter returns the output of the conversion tool on success and throws an IOException on error, as before.

JAttach

There are multiple ways to use the embedded jattach besides using the binary returned by getJattachPath: ExecutionResult executeJattach(String... args) and boolean jattach(Path agentPath[, String arguments]).

executeJattach works similar to executeProfiler, e.g.:

AsyncProfilerLoader.executeJattach(
  "<pid>", "load", "instrument", "false", "javaagent.jar=arguments")
// is equivalent to
jattach <pid> load instrument false "javaagent.jar=arguments"

This runs the same as jattach with the only exception that every string that ends with
libasyncProfiler.so is mapped to the extracted async-profiler library for the load command.
One can, therefore, for example, start the async-profiler on a different JVM via the following:

AsyncProfilerLoader.executeJattach(
  PID, "load", "libasyncProfiler.so", true, "start")

But this use case can, of course, be accomplished by using the executeProfiler method, which internally uses jattach.

A great use case for jattach is to attach a custom native agent to the currently running JVM. Starting with JVM 9 doing this via VirtualMachine#attach throws an IOException if you try this without setting -Djdk.attach.allowAttachSelf=true. The boolean jattach(Path agentPath[, String arguments]) methods simplify this, constructing the command line arguments for you and returning true if jattach succeeded, e.g.:

AsyncProfilerLoader.jattach("libjni.so")

This attaches the libjni.so agent to the current JVM. The process id of this JVM can be obtained by using the getProcessId method.

Extracting a Native Library

I happen to write many small projects for testing profilers that often require loading a native library from the resources folder; an example can be found in the trace_validation (blog post) project:

/**
 * extract the native library and return its temporary path
 */
public static synchronized Path getNativeLibPath(
 ClassLoader loader) {
  if (nativeLibPath == null) {
    try {
      String filename = System.mapLibraryName(NATIVE_LIB);
      InputStream in = loader.getResourceAsStream(filename);
      // ...
    } catch (IOException e) {
      throw new RuntimeException(e);
    }
  }
  return nativeLibPath;
}

I, therefore, added the extractCustomLibraryFromResources method:

/**                                                                                                                                        
 * Extracts a custom native library from the resources and 
 * returns the alternative source if the file is not 
 * in the resources.                                                                                                    
 *                                                                                                                                         
 * If the file is extracted, then it is copied to 
 * a new temporary folder which is deleted upon JVM exit.                            
 *                                                                                                                                         
 * This method is mainly seen as a helper method 
 * to obtain custom native agents for #jattach(Path) and                          
 * #jattach(Path, String). It is included in ap-loader 
 * to make it easier to write applications that need                           
 * custom native libraries.                                                                                                           
 *                                                                                                                                         
 * This method works on all architectures.                                                                                          
 *                                                                                                                                         
 * @param classLoader the class loader to load 
 *                 the resources from                                                                          
 * @param fileName the name of the file to copy, 
 *                 maps the library name if the fileName 
 *                 does not start with "lib", e.g. "jni" 
 *                 will be treated as "libjni.so" on Linux 
 *                 and as "libjni.dylib" on macOS                                       
 * @param alternativeSource the optional resource directory 
 *                 to use if the resource is not found in 
 *                 the resources, this is typically the case 
 *                 when running the application from an IDE, 
 *                 an example would be "src/main/resources" 
 *                 or "target/classes" for maven projects                                                    
 * @return the path of the library                                                                                                         
 * @throws IOException if the extraction fails and 
 *                  the alternative source is not present 
 *                  for the current architecture                      
 */                                                                                                                                        
public static Path extractCustomLibraryFromResources(
  ClassLoader classLoader, String fileName, 
  Path alternativeSource) throws IOException

This can be used effectively together with jattach to attach a native agent from the resources to the current JVM:

// extract the agent first from the resources
Path p = one.profiler.AsyncProfilerLoader.
  extractCustomLibraryFromResources(
    ....getClassLoader(), "library name");
// attach the agent to the current JVM
one.profiler.AsyncProfilerLoader.jattach(p, "optional arguments")
// -> returns true if jattach succeeded

This use-case comes from a profiler test helper library on which I hope to write a blog post in the near future.

Conclusion

ap-loader makes it easy to use async-profiler and its included tools programmatically without creating complex build systems. The project is regularly updated to keep pace with the newest stable async-profiler version; updating a version just requires changing a single dependency in your dependencies list.

The ap-loader is mature, so try it and tell me about it. I’m happy to help with any issues you have with this library, so feel free to write to me or create an issue on GitHub.

This project is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

Validating Java Profiling APIs

In my last post, I covered a correctness bug in the fundamental Java profiling API AsyncGetCallTrace that I found just by chance. Now the question is: Could we find such bugs automatically? Potentially uncovering more bugs or being more confident in the absence of errors. I already wrote code to test the stability of the profiling APIs, testing for the absence of fatal errors, in my jdk-profiling-tester project. Such tools are invaluable when modifying the API implementation or adding a new API. This post will cover a new prototypical tool called trace_validation and its foundational concepts. I focus here on the AsyncGetCallTrace and GetStackTrace API, but due to the similarity in the code, JFR should have similar correctness properties.

The tool took far longer to bring to a usable(ish) state, this is why I didn’t write a blog post last week. I hope to be on schedule again next week.

AsyncGetCallTrace and GetStackTrace

A short recap from my blog series “Writing a Profiler from Scratch”: Both APIs return the stack trace for a given thread at a given point in time (A called B, which in turn called C, …):

AsyncGetCallTrace

The only difference is that AsyncGetCallTrace (ASGCT) returns the stack trace at any point in the execution of the program and GetStackTrace (GST) only at specific safe points, where the state of the JVM is defined. GetStackTrace is the only official API to obtain stack traces but has precision problems. Both don’t have more than a few basic tests in the OpenJDK.

Correctness

But when is the result of a profiling API deemed to be correct? If it matches the execution of the program.

This is hard to check if we don’t modify the JVM itself in general. But it is relatively simple to check for small test cases, where the most run-time is spent in a single method. We can then just check directly in the source code whether the stack trace makes sense. We come back to this answer soon.

The basic idea for automation is to compare the returns of the profiling API automatically to the returns of an oracle. But we sadly don’t have an oracle for the asynchronous AsyncGetCallTrace yet, but we can create one by weakening our correctness definition and building up our oracle in multiple stages.

Weakening the correctness definition

In practice, we don’t need the profiling APIs to return the correct result in 100% of all cases and for all frames in the trace. Typical profilers are sampling profilers and therefore approximate the result anyway. This makes the correctness definition easier to test, as it let’s us make the trade-off between feasibility and precision.

Layered oracle

The idea is now to build our oracle in different layers. Starting with basic assumptions and writing tests to verify that the layer above is probably correct too. Leading us to our combined test of asynchronous AsyncGetCallTrace. This has the advantage that every check is relatively simple, which is important, because the whole oracle depends on how much we trust the basic assumptions and the tests that verify that a layer is correct. I describe the layers and checks in the following:

Different layers of trace_validation

Ground layer

We start with the most basic assumption as our ground layer: An approximation of the stack traces can be obtained by instrumenting the byte code at runtime. The idea is to push at every entry of a method the method and its class (the frame) onto a stack and to pop it at every exit:

class A {
 void methodB() {
   // ...
 }
}

Is transformed into:

class A {
 void methodB() {
   trace.push("A", "methodB");
   // ...
   trace.pop();
 }
}

The instrumentation agent modifies the bytecode at runtime, so every exit of the method is recorded. I used the great Javassist library for the heavy lifting. We record all of this information in thread-local stacks.

This does not capture all methods, because we cannot modify native methods which are implemented in C++, but it covers most of the methods. This is what I meant by an approximation before. A problem with this is the cost of the instrumentation. We can make a trade-off between precision and usefulness by only instrumenting a portion of methods.

We can ask the stack data structure for an approximation of the current stack trace in the middle of every method. These traces are by construction correct, especially when we implement the stack data structure in native code, only exposing the Trace::push and Trace::pop methods. This limits the code reordering by the JVM.

GetStackTrace layer

This API is, as I described above, the official API to get the stack traces and it is not limited to basic stack walking, as it walks only when the JVM state is defined. One could therefore assume that it returns the correct frames. This is what I did in my previous blog post. But we should test this assumption: We can create a native Trace::check which calls GetStackTrace and checks that all frames from Trace are present and in the correct order. Calls to this method are inserted after the call to Trace::push at the beginning of methods.

There are usually more frames present in the return of GetStackTrace, but it is safe to assume that the correctness attributes approximately hold true for the whole GetStackTrace too. One could of course check the correctness of GetStackTrace at different parts of the methods. I think that this is probably unnecessary, as common Java programs call methods every few bytecode instructions.

This layer gives us now the ability to get the frames consisting of method id and location at safe points.

Safe point AsyncGetCallTrace layer

We can now use the previous layer and the fact that the result of both APIs has almost the same format, to check that AsyncGetCallTrace returns the correct result at safe points. Both APIs should yield the same results there. The check here is as simple as calling both APIs in the Trace::check method and comparing their results (omitting the location info as this is less stable). This has of course the same caveats as in the previous layer, but this is acceptable in my opinion.

If you’re curious: The main difference between the frames of both APIs is the magic number that ASGCT and GST use to denote native methods in the location field.

Async AsyncGetCallTrace layer

Our goal is to convince ourselves that AsyncGetCallTrace is safe at non safepoints under the assumption that AsyncGetCallTrace is safe at safe points (here the beginning of methods). The solution consists of two parts: The trace stack which contains the current stack trace and the sample loop which calls AsyncGetCallTrace asynchronously and compares the returns with the trace stack.

The trace stack datastructure allows to push and pop stack traces on method entry and exit. It consists of a large frames array which contains the current frames: index 0 has the bottom frame and index top contains the top most frame (the reverse order compared to AsyncGetCallTrace). The array is large enough, here 1024 entries, to be able to store stack traces of all relevant sizes. It is augmented by a previous array which contains the index of the top frame of most recent transitive caller frame of the current top frame.

Trace stack data structure used to store the stack of stack traces

We assume here that the caller trace is a sub trace of the current trace, with only the caller frame differing in the location (lineno here). This is due to the caller frame location being the beginning of the method where we obtained the trace. The calls to other methods have different locations. We mark the top frame location therefore with a magic number to state that this information changes during the execution of the method.

This allows us to store the stack of stack traces in a compact manner. We create such a data structure per thread in thread local storage. This allows us to obtain a possibly full sub trace at every point of the execution, with only the top frame location of the sub trace differing. We can use this to check the correctness of AsyncGetCallTrace at arbitrary points in time:

We create a loop in a separate thread which sends a signal to a randomly chosen running Java thread and use the signal handler to call AsyncGetCallTrace for the Java thread and to obtain a copy of the current trace stack. We then check that the result is as expected. Be aware of the synchronization.

With this we can be reasonably certain that AsyncGetCallTrace is correct enough, when all layer tests run successfully on a representative benchmark like renaissance. An prototypical implementation of all of this is my trace_validation project: It runs with the current head of the OpenJDK without any problems, except for an error rate of 0.003% percent for the last check (depending on the settings, but also with two caveats: the last check still has the problem of sometimes hanging, but I’ll hope to fix it in the next few weeks and I only tested it on Linux x86.

There is another possible way to implement the last check which I didn’t implement (yet), but which is still interesting to explore:

Variant of the Async AsyncGetCallTrace check

We can base this layer on top of the GetStackTrace layer too by exploiting the fact that GetStackTrace blocks at non safe points until a safe point is reached and then obtain the stack trace (see JBS). Like with the other variant of the check, we create a sample loop in a separate thread, pick a random Java thread, send it a signal, and then call AsyncGetCallTrace in the signal handler. But directly after sending the signal, we call GetStackTrace, to obtain a stack trace at the next safe point. The stack trace should be roughly the same as the AsyncGetCallTrace trace, as the time delay between their calls is minimal. We can compare both traces and thereby make an approximate check.

The advantage is that we don’t do any instrumentation with this approach and only record the stack traces that we really need. The main disadvantage is that it is more approximate as the time between timing of AsyncGetCallTrace and GetStackTrace is not obvious and certainly implementation and load specific. I did not yet test it, but might do so in the future because the setup should be simple enough to add it to the OpenJDK as a test case.

Update 20th March: I implemented this variant (and it will be soon the basis of a JTREG test) and found an error related to custom class loaders.

Update 21st March: I implemented the reduced version in a stand-alone agent that can be found on GitHub.

Conclusion

I’ve shown you in this article how we can test the correctness of AsyncGetCallTrace automatically using a multi level oracle. The implementation differs slightly and is more complicated then expected, because of the percularities of writing an instrumentation agent with a native agent and a native library.

I’m now fairly certain that AsyncGetCallTrace is correct enough and hope you’re too. Please try out the underlying project and come forward with any issues or suggestions.

This blog post is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

Do you trust profilers? I once did too

Profilers are great tools in your toolbox, like debuggers, when solving problems with your Java application (I’ve been on a podcast on this topic recently). I’ll tell you some of their problems and a technique to cope with them in this blog post.

There are many open-source profilers, most notably JFR/JMC, and async-profiler, that help you to find and fix performance problems. But they are just software themself, interwoven with a reasonably large project, the OpenJDK (or OpenJ9, for that matter), and thus suffer from the same problems as the typical problems of application they are used to profile:

  • Tests could be better
  • Performance and accuracy could be better
  • Tests could be more plentiful, especially for the underlying API, which could be tested well
  • Changes in seemingly unrelated parts of the enclosing project can adversely affect them

Therefore you take the profiles generated by profilers with a grain of salt. There are several blog posts and talks covering the accuracy problems of profilers:

I would highly recommend you to read my Writing a profiler from scratch series If you want to know more about how the foundational AsyncGetCallTrace is used in profilers. Just to list a few.

A sample AsyncGetCallTraceTrace bug

A problem that has been less discussed is the lacking test coverage of the underlying APIs. The AsyncGetCallTrace API, used by async-profiler and others, has just one test case in the OpenJDK (as I discussed before). This test case can be boiled down to the following:

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

public class Main {

    static { /** load native library */ }

    public static void main(String[] args) throws Exception {
        Class<?> klass = Main.class;
        Method mainMethod = klass.getMethod("test");
        mainMethod.invoke(null);
    }

    public static void test() {
        if (!checkAsyncGetCallTraceCall()) {
            throw ...;
        }
    }

    public static native boolean checkAsyncGetCallTraceCall();
}

This is the simplest test case that can be written in the OpenJDK JTREG test framework for OpenJDK. The problem with this test case? The implementation of checkAsyncGetCallTraceCall only checks for the topmost frame. To test AsyncGetCallTrace correctly here, one should compare the trace returned by this call with the trace of an oracle. We can use GetStackTrace (the safepoint-biased predecessor of ASGCT) here as it seems to return the correct trace.

GetStackTrace returns something like the following:

Frame 0: Main.checkAsyncGetStackTraceCall
Frame 1: Main.test
Frame 2: java.lang.invoke.LambdaForm$DMH.[...].invokeStatic
Frame 3: java.lang.invoke.LambdaForm$MH.[...].invoke
Frame 4: java.lang.invoke.Invokers$Holder.invokeExact_MT
Frame 5: jdk.internal.reflect.DirectMethodHandleAccessor
                             .invokeImpl
Frame 6: jdk.internal.reflect.DirectMethodHandleAccessor.invoke
Frame 7: java.lang.reflect.Method.invoke
Frame 8: Main.main

AsyncGetCallTrace, on the other hand, had problems walking over some of the reflection internals and returned:

Frame 0: Main.checkAsyncGetStackTraceCall
Frame 1: Main.test
Frame 2: java.lang.invoke.LambdaForm$DMH.[...].invokeStatic

This problem can be observed with a modified test case with JFR and async-profiler too:

public class Main {

    public static void main(String[] args) throws Exception {
        Class<?> klass = Main.class;
        Method mainMethod = klass.getMethod("test");
        mainMethod.invoke(null);
    }

    public static void test() {
        javaLoop();
    }

    public static void javaLoop() {
        long start = System.currentTimeMillis();
        while (start + 3000 > System.currentTimeMillis());
    }
}
The expected flame graph is on the left (obtained after fixing the bug), and the actual flame graph is on the right.

So the only test case on AsyncGetCallTrace in the OpenJDK did not properly test the whole trace. This was not a problem when the test case was written. One can expect that its author checked the entire stack trace manually once and then created a small check test case to test the first frame, which is not implementation specific. But this is a problem for regression testing:

The Implementation of JEP 416: Reimplement Core Reflection with Method Handle in JDK 18+23 in mid-2021 modified the inner workings of reflection and triggered this bug. The lack of proper regression tests meant the bug had only been discovered a week ago. The actual cause of the bug is more complicated and related to a broken invariant regarding stack pointers in the stack walking. You can read more on this in the comments by Jorn Vernee and Richard Reingruber to my PR.

My PR improves the test by checking the result of AsyncGetCallTrace against GetStackTrace, as explained before, and fixing the bug by slightly loosening the invariant.

My main problem with finding this bug is that it shows how the lack of test coverage for the underlying profiling APIs might cause problems even for profiling simple Java code. I only found the bug because I’m writing many tests for my new AsyncGetStackTrace API. It’s hard work, but I’m convinced this is the only way to create a reliable foundation for profilers.

Profilers in a loop

Profilers have many problems but are still helpful if you know what they can and cannot do. They should be used with care, without trusting everything they tell you. Profilers are only as good as the person interpreting the profiler results and the person’s technique.

I have a background in computer science, and every semester I give students in a paper writing lab an hour-long lecture on doing experiments. I started this a few years back and continue to do it pro-bono because it is an important skill to teach. One of the most important things that I teach the students is that doing experiments is essentially a loop:

You start with an abstract model of the experiment and its environment (like the tool or algorithm you’re testing). Then you formulate a hypothesis in this model (e.g., “Algorithm X is faster as Y because of Z”). You might find problems in your model during this step and go back to the modeling step, or you don’t and start evaluating, checking whether the hypothesis holds. During this evaluation, you might find problems with your hypothesis (e.g., it isn’t valid) or even your model and go back to the respective step. Besides problems, you usually find new information that lets you refine your model and hypothesis. Evaluating without a mental model or a hypothesis makes it impossible to interpret the evaluation results correctly. But remember that a mismatch between hypothesis and evaluation might also be due to a broken evaluation.

The same loop can be applied to profiling: Before investigating any issue with a program, you should acquire at least a rough mental model of the code. This means understanding the basic architecture, performance-critical components, and the issues of the underlying libraries. Then you formulate a hypothesis based on the problem you’re investigating embedded in your mental model (e.g., “Task X is slow because Y is probably slow …”). You can then evaluate the hypothesis using actual tests and a profiler. But as before, remember that your evaluation might also contain bugs. You can only discover these with a mental model and a reasonably refined hypothesis.

This technique lets you use profilers without fearing that spurious errors will lead you to wrong conclusions.

I hope you found this article helpful and educational. It is an ongoing effort to add proper tests and educate users of profilers. See you in the next post when I cover the next step in writing a profiler from scratch.

This blog post is part of my work in the SapMachine team at SAP, making profiling easier for everyone.

JFR Timestamps and System.nanoTime

Did you ever wonder whether JFR timestamps use the same time source as System.nanoTime? This is important when you have miscellaneous logging besides JFR events; otherwise, you could not match JFR events and your logging properly. We assume here that you use System.nanoTime and not less-suited timing information from System.currentTimeMillis.

The journey into this started with a question on the JDK Mission Control slack channel, which led me into a rabbit hole:

Could I have a question regarding JFR timestamps? (working with Linux) Is there any difference between JFR timestamp implementation and System#nanoTime (any optimization)?

Petr Bouda

This question essentially boils down to comparing both methods’ OS time sources. We’re only considering Unix systems in the following.

Source of JFR timestamps

The JFR event time stamps are set in the JFR event constructor, which is defined in jfrEvent.hpp (and not in the Java code, as one might expect):

  JfrEvent(EventStartTime timing=TIMED) : 
    _start_time(0), _end_time(0),
    _untimed(timing == UNTIMED),
    _should_commit(false), _evaluated(false)
#ifdef ASSERT
  , _verifier()
#endif
  {
    if (!T::isInstant && !_untimed && is_enabled()) {
      set_starttime(JfrTicks::now());
    }
  }

Looking further reveals that JFRTicks calls FastUnorderedElapsedCounterSource which uses two different time sources:

FastUnorderedElapsedCounterSource::Type 
 FastUnorderedElapsedCounterSource::now() {
#if defined(X86) && !defined(ZERO)
  static bool valid_rdtsc = Rdtsc::initialize();
  if (valid_rdtsc) {
    return Rdtsc::elapsed_counter();
  }
#endif
  return os::elapsed_counter();
}

The RDTSC instruction reads the time stamp counter on x86 processors:

The time stamp counter (TSC) is a hardware counter found in all contemporary x86 processors. The counter is implemented as a 64-bit model-specific register (MSR) that is incremented at every clock cycle. The RDTSC (“read time stamp counter”) register has been present since the original Pentium.

Already because of the access method, TSC provides a low-overhead and high-resolution way to obtain CPU timing information. This traditional premise was violated when such factors as system sleep states, CPU “hotplugging”, “hibernation”, and CPU frequency scaling were introduced to the x86 lineage. This was however mainly a short abruption: in many new x86 CPUs the time stamp counter is again invariant with respect to the stability of the clock frequency. Care should be however taken in implementations that rely on this assumption.

NETBSD MANUAL

This instruction allows the OS to implement a monotonic real-time clock.

On non-x86 systems os::elapsed_counter is used, which, surprise, calls os::javaTimeNanos:

jlong os::elapsed_counter() {
  return os::javaTimeNanos() - initial_time_count;
}

Source of System.nanoTime

Now the remaining question is: Does System.nanoTime also call os::javaTimeNanos? The method is defined in the jvm.cpp:

JVM_LEAF(jlong, JVM_NanoTime(JNIEnv *env, jclass ignored))
  return os::javaTimeNanos();
JVM_END

So System.nanoTime is just a tiny wrapper around os::javaTimeNanos. So this solves the original question on non-x86 CPUs. But what about x86 CPUs?

First for Mac OS: It boils down to calling mach_absolute_time:

Returns current value of a clock that increments monotonically in tick units (starting at an arbitrary point), this clock does not increment while the system is asleep.

ApplE DEVELOPER DOCUMENTATION

Information on the implementation of this method is scarce, but source code from 2007 suggests that mach_absolute_time is RDTSC based. So there is (probably) no difference between JFR timestamps and System.nanoTime on Mac OS, regardless of the CPU architecture.

Now on Linux: Here, the used os::javaTimeNanos is implemented using clock_gettime(CLOCK_MONOTONIC, ...):

CLOCK_MONOTONIC Clock that cannot be set and represents monotonic time since some unspecified starting point.

Linux MAN PAGE

I tried to find something in the Linux Kernel sources, but they are slightly too complicated to find the solution quickly, so I had to look elsewhere. Someone asked a question on clock_gettime on StackOverflow. The answers essentially answer our question too: clock_gettime(CLOCK_MONOTONIC, ...) seems to use RDTSC.

Conclusion

JFR timestamps and System.nanoTime seem to use the same time source on all Unix systems on all platforms, as far as I understand it.

You can stop the JVM from using RDTSC by using the -XX:+UnlockExperimentalVMOptions -XX:-UseFastUnorderedTimeStamps JVM flags (thanks to Richard Startin for pointing this out). You can read Markus Grönlunds Mail on Timing Differences Between JFR and GC Logs for another take on JFR timestamps (or skip ahead):

JFR performance as it relates to event generation, which is also functional for JFR, reduce to a large extent to how quickly a timestamp can be acquired. Since everything in JFR is an event, and an event will have at least one timestamp, and two timestamps for events that represent durations, the event generation leans heavily on the clock source. Clock access latencies is therefore of central importance for JFR, maybe even more so than correctness. And historically, operating systems have varied quite a bit when it comes to access latency and resolution for the performance timers they expose.

What you see in your example is that os::elapsed_counter() (which on Windows maps to QueryPerformanceCounter() with a JVM relative epoch offset) and the rdtsc() counter are disjoint epochs, and they are treated as such in Hotspot. Therefore, attempting to compare the raw counter values is not semantically valid.

Relying on and using rdtsc() come with disclaimers and problems and is generally not recommended. Apart from the historical and performance related aspects already detailed, here is a short description of how it is treated in JFR:

JFR will only attempt to use this source if it has the InvariantTSC property, with timestamp values only treated relative to some other, more stable, clock source. Each “chunk” (file) in JFR reifies a relative epoch, with the chunk start time anchored to a stable timestamp (on Windows this is UTC nanoseconds). rdtsc() timestamps for events generated during that epoch are only treated relative to this start time during post-processing, which gives very high resolution to JFR events. As JFR runs, new “chunks”, and therefore new time epochs, are constructed, continuously, each anchored anew to a stable timestamp.

The nature of rdtsc() querying different cores / sockets with no guarantee of them having been synchronized is of course a problem using this mechanism. However, over the years, possible skews have proven not as problematic as one might think in JFR. In general, the relative relations between the recorded JFR events give enough information to understand a situation and to solve a problem. Of course, there are exceptions, for example, when analyzing low-level aspects expecting high accuracy, usually involving some correlation to some other non-JFR related component. For these situations, an alternative is to turn off rdtsc() usages in JFR using the flags: -XX:+UnlockExperimentalVMOptions -XX:-UseFastUnorderedTimeStamps. JFR will now use os::elapsed_counter() as the time source. This comes with higher overhead, but if this overhead is not deemed problematic in an environment, then this is of course a better solution.

As other have already pointed out, there have been evolution in recent years in how operating systems provide performance counter information to user mode. It might very well be that now the access latencies are within acceptable overhead, combined with high timer resolution. If that is the case, the rdtsc() usages should be phased out due to its inherent problems. This requires a systematic investigation and some policy on how to handle older HW/SW combinations – if there needs to be a fallback to continue to use rdtsc(), it follows it is not feasible to phase it out completely.

Markus Grönlund

Difference between System.currentTimeMillis and System.nanoTime

This is not directly related to the original question, but nonetheless interesting. System.currentTimeMillis is implemented using clock_gettime(CLOCK_REALTIME, ...) on all CPU architectures:

CLOCK_REALTIME System-wide realtime clock. Setting this clock requires appropriate privileges.

Linux MAN PAGE

This clock is not guaranteed to be monotonic:

CLOCK_REALTIME represents the machine’s best-guess as to the current wall-clock, time-of-day time. […] this means that CLOCK_REALTIME can jump forwards and backwards as the system time-of-day clock is changed, including by NTP.

CLOCK_MONOTONIC represents the absolute elapsed wall-clock time since some arbitrary, fixed point in the past. It isn’t affected by changes in the system time-of-day clock.

Ciro Santilli on STACKOVERFLOW

So does it make a difference? Probably only slightly, especially if you’re running shorter profiling runs. For longer runs, consider using System.nanoTime.

I hope you enjoyed coming down this rabbit hole with me and learned something about JFR internals along the way.

This blog post is part of my work in the SapMachine team at SAP, making profiling easier for everyone.